To study the mechanism and control of well deviation in air drilling, a mechanical model of bottom hole assembly (BHA) with double stabilizer is established by using the beam-column method. The mathematical model related to side force of BHA and deviating force of strata are derived by analyzing the characteristics of gravel strata in the practical engineering. The effects of weight on bit (WOB), expansion ratio of borehole diameter (ERBD), angle of well inclination, diameter of drill collar and strata bending moment on side force of BHA are explored. Then, the superposition of bit side force and deviating force of strata is obtained. The results display that side force of BHA is obviously influenced by ERBD, angle of well inclination, diameter of drill collar and strata bending moment; and the deviation force and azimuth force of gravel strata are significantly affected by comprehensive cutting anisotropy index, angle of well inclination and dip angle of strata. Finally, the variation tendency of inclination angle and azimuth angle in field measurement is consistent with the theoretical and numerical researches. The present work can provide theoretical guidance to control the well deviation in the practical air drilling.
The lateral vibration of drill string causes well deviation and the collision between drill collar and sidewall, and severe lateral vibration even affects the drilling safety or reliability. In view of the problems above, the lateral vibration characteristics of drill string need to be analyzed. Therefore, a newly vibration-collision model of BHA (bottom hole assembly) with random collision characteristics is proposed in this paper. Firstly, the dynamic model of drill collar with double stabilizer is presented by utilizing the Lagrange equations. Secondly, the dynamic characteristics of drill collar in air and mud drilling is analyzed with different collision frequencies. Subsequently, the displacement and motion trajectory of drill collar under different structure parameters of BHA and mechanical parameters of system are investigated by numerical simulation. Finally, the influence of rotation speed of BHA and length of drill collar on lateral vibration of drill collar is discussed. The results indicate that the lateral vibration of drill collar in air drilling is more serious than that in mud drilling; and the higher the collision frequency, the more severe the lateral vibration. Improving rotation speed of BHA, length of drill collar and WOB (weight on bit) have promoting influence on lateral vibration of drill collar; however, increasing stabilizer diameter has suppressing influence on lateral vibration of drill collar. The research findings give reasonable guidance for structure design of BHA and selection of mechanical parameters of system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.