Chemokine receptor CCR10 is expressed by all intestinal IgA-producing plasma cells and is suggested to play an important role in positioning these cells in the lamina propria for proper IgA production to maintain intestinal homeostasis and protect against infection. However, interfering with CCR10 or its ligand did not impair intestinal IgA production under homeostatic conditions or during infection, and the in vivo function of CCR10 in the intestinal IgA response remains unknown. We found that an enhanced generation of IgA + cells in isolated lymphoid follicles of intestines offset defective intestinal migration of IgA + cells in CCR10-KO mice, resulting in the apparently normal IgA production under homeostatic conditions and in primary response to pathogen infection. However, the compensatorily generated IgA + cells in CCR10-KO mice carried fewer hypermutations in their Ig heavy chain alleles than those of WT mice, indicating that their IgA repertoires are qualitatively different, which might impact the intestinal homeostasis of microflora. In addition, CCR10-deficient long-lived IgA-producing plasma cells and IgA + memory B cells generated against the pathogen infection could not be maintained properly in intestines. Consequently, IgA memory responses to the pathogen reinfection were severely impaired in CCR10-KO mice. These findings elucidate critical roles of CCR10 in regulating the intestinal IgA response and memory maintenance and could help in design of vaccines against intestinal and possibly other mucosal pathogens.
The induction of an adaptive immune response to a previously unencountered pathogen is a time-consuming process and initially the infection must be held in check by the innate immune system. In the case of an i.p. infection with Salmonella typhimurium, survival requires both CD14 and LPS-binding protein (LBP) which, together with Toll-like receptor 4 and myeloid differentiation protein 2, provide a sensitive means to detect bacterial LPS. In this study, we show that in the first hours after i.p. infection with Salmonella a local inflammatory response is evident and that concomitantly neutrophils flood into the peritoneum. This rapid neutrophil influx is dependent on TNF since it is 1) abolished in TNF KO mice and 2) can be induced by i.p. injection of TNF in uninfected animals. Neutrophil influx is not strictly dependent on the presence of either LBP or CD14. However, in their absence, no local inflammatory response is evident, neutrophil migration is delayed, and the mice succumb to the infection. Using confocal microscopy, we show that the neutrophils which accumulate in CD14 and LBP null mice, albeit with delayed kinetics, are nevertheless fully capable of ingesting the bacteria. We suggest that the short delay in neutrophil influx gives the pathogen a decisive advantage in this infection model.
Acute and chronic hyperinflammation are of major clinical concern, and many treatment strategies are therefore directed to inactivating parts of the inflammatory system. However, survival depends on responding quickly to pathogen attack, and since the adaptive immune system requires several days to adequately react, we rely initially on a range of innate defenses, many of which operate by activating parts of the inflammatory network. For example, LPS-binding protein (LBP) can transfer the LPS of Gram-negative bacteria to CD14 on the surface of macrophages, and this initiates an inflammatory reaction. However, the importance of this chain of events in infection is unclear. First, the innate system is redundant, and bacteria have many components that may serve as targets for it. Second, LBP can transfer LPS to other acceptors that do not induce inflammation. In this study, we show that innate defense against a lethal peritoneal infection with Salmonella requires a direct proinflammatory involvement of LBP, and that this is a major nonredundant function of LBP in this infection model. This emphasizes that blocking the LBP-initiated inflammatory cascade disables an essential defense pathway. Any anti-inflammatory protection that may be achieved must be balanced against the risks inherent in blinding the innate system to the presence of Gram-negative pathogens.
Ethanol administration led to a significant increase in endotoxin levels in serum and LBP and CD14 mRNA expressions in liver tissues. The increase of LBP and CD14 mRNA expression might wake the liver more sensitive to endotoxin and liver injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.