Singular value decomposition (SVD) has been proven to be an effective de-noising tool for flaw echo signal feature detection in ultrasonic non-destructive evaluation (NDE). However, the uncertainty in the arbitrary manner of the selection of an effective singular value weakens the robustness of this technique. Improper selection of effective singular values will lead to bad performance of SVD de-noising. What is more, the computational complexity of SVD is too large for it to be applied in real-time applications. In this paper, to eliminate the uncertainty in SVD de-noising, a novel flaw indicator, named the maximum singular value indicator (MSI), based on short-time SVD (STSVD), is proposed for flaw feature detection from a measured signal in ultrasonic NDE. In this technique, the measured signal is first truncated into overlapping short-time data segments to put feature information of a transient flaw echo signal in local field, and then the MSI can be obtained from the SVD of each short-time data segment. Research shows that this indicator can clearly indicate the location of ultrasonic flaw signals, and the computational complexity of this STSVD-based indicator is significantly reduced with the algorithm proposed in this paper. Both simulation and experiments show that this technique is very efficient for real-time application in flaw detection from noisy data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.