This paper describes a study on the improvement of the dehydration performance of the conventional washing machine model. Recently, as interest in improving the dehydration performance of washing machines has increased, the need for a study on a high-speed electric motor has emerged. However, this conventional spoke-type PMSM has difficulty in speeding up due to the following problems. First, field weakening control is indispensable for high-speed operation of an electric motor. This control method is a big problem in causing torque drop and irreversible demagnetization of the motor. Moreover, the centrifugal force increases during high-speed operation, which adversely affects the stiffness of the motor. Therefore, in this paper, a new rotor shape of spoke-type PMSM was proposed to solve the above problem.
In this paper, an axial slot-less permanent magnet synchronous motor (ASFPMSM) was designed to increase the power density. The iron core of the stator was replaced with block coils, and the stator back yoke was removed because 3D printing can provide a wide range of structures of the stator. The proposed model also significantly impacts efficiency because it can reduce iron loss. To meet size and performance requirements, coil thickness and number of winding layers in the block, the total amount of magnet, and pole/slot combinations were considered. The validity of the proposed model was proved via finite elements analysis (FEA).
The spoke-type permanent magnet synchronous motor (PMSM), which is a general ferrite magnetic flux-concentrated motor, has a low portion of reluctance torque at the total torque magnitude. Therefore, as a way to increase the reluctance torque, there is a double-layer spoke-type PMSM that can maximize the difference in inductance between the d-axis and the q-axis. However, in the double-layer spoke-type PMSM, cogging torque, torque ripple, and total harmonic distortion (THD) increase with reluctance torque, which is the main cause of vibration and noise. In this paper, a method is proposed that provides the same effect as skew without dividing stages of the permanent magnet by dividing the core of the rotor into two types so that it is easy to manufacture according to the number of stages, unlike extant skew methods. Based on the method, the reduction in cogging torque and THD was verified by finite element analysis (FEA).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.