Africa’s need to double food production and feed the burgeoning human population, without compromising its natural resource base, has raised the momentum for sustainable agricultural intensification on the continent. Many studies describe agronomic practices that can increase productivity on existing agricultural land without damaging the environment and without increasing the agricultural carbon footprint. However, there is limited information on specific practices with the greatest potential to contribute to sustainable intensification on smallholder farms in sub-Saharan Africa, while simultaneously keeping the carbon footprint low. The objectives of this review were to (1) identify good agronomic practices with potential for contributing to sustainable intensification across sub-Saharan Africa, (2) synthesize available information on benefits and synergies from these technologies, and (3) discuss bottlenecks in their adoption in order to obtain insights that inform the formulation of supportive policies. Agroforestry, cereal-legume intercropping, conservation agriculture, doubled-up legume cropping, fertilizer micro-dosing, planting basins, and push-pull technology were identified as key agronomic innovations widely promoted in sub-Saharan Africa. We show that these innovations can build synergies and increase resource use efficiency while reducing agricultural carbon footprint. We outline the benefits, trade-offs, and limitations of these practices and discuss their potential role in strengthening food sovereignty and climate change adaptation and mitigation.
AimTree crowns determine light interception, carbon and water exchange. Thus, understanding the factors causing tree crown allometry to vary at the tree and stand level matters greatly for the development of future vegetation modelling and for the calibration of remote sensing products. Nevertheless, we know little about large‐scale variation and determinants in tropical tree crown allometry. In this study, we explored the continental variation in scaling exponents of site‐specific crown allometry and assessed their relationships with environmental and stand‐level variables in the tropics.LocationGlobal tropics.Time periodEarly 21st century.Major taxa studiedWoody plants.MethodsUsing a dataset of 87,737 trees distributed among 245 forest and savanna sites across the tropics, we fitted site‐specific allometric relationships between crown dimensions (crown depth, diameter and volume) and stem diameter using power‐law models. Stand‐level and environmental drivers of crown allometric relationships were assessed at pantropical and continental scales.ResultsThe scaling exponents of allometric relationships between stem diameter and crown dimensions were higher in savannas than in forests. We identified that continental crown models were better than pantropical crown models and that continental differences in crown allometric relationships were driven by both stand‐level (wood density) and environmental (precipitation, cation exchange capacity and soil texture) variables for both tropical biomes. For a given diameter, forest trees from Asia and savanna trees from Australia had smaller crown dimensions than trees in Africa and America, with crown volumes for some Asian forest trees being smaller than those of trees in African forests.Main conclusionsOur results provide new insight into geographical variability, with large continental differences in tropical tree crown allometry that were driven by stand‐level and environmental variables. They have implications for the assessment of ecosystem function and for the monitoring of woody biomass by remote sensing techniques in the global tropics.
This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process which may lead to differences between this version and the Version of Record. Please cite this article as
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.