Automatic crack detection and segmentation play a significant role in the whole system of unmanned aerial vehicle inspections. In this paper, we have implemented a deep learning framework for crack detection based on classical network architectures including Alexnet, VGG, and Resnet. Moreover, inspired by the feature pyramid network architecture, a hierarchical convolutional neural network (CNN) deep learning framework which is efficient in crack segmentation is also proposed, and its performance of it is compared with other state-of-the-art network architecture. We have summarized the existing crack detection and segmentation datasets and established the largest existing benchmark dataset on the internet for crack detection and segmentation, which is open-sourced for the research community. Our feature pyramid crack segmentation network is tested on the benchmark dataset and gives satisfactory segmentation results. A framework for automatic unmanned aerial vehicle inspections is also proposed and will be established for the crack inspection tasks of various concrete structures. All our self-established dataset and codes are opensourced at: https://github.com/KangchengLiu/Crack-Detectionand-Segmentation-Dataset-for-UAV-Inspection.
Existing state-of-the-art 3D point cloud understanding methods merely perform well in a fully supervised manner. To the best of our knowledge, there exists no unified framework that simultaneously solves the downstream high-level understanding tasks including both segmentation and detection, especially when labels are extremely limited. This work presents a general and simple framework to tackle point cloud understanding when labels are limited. The first contribution is that we have done extensive methodology comparisons of traditional and learned 3D descriptors for the task of weakly supervised 3D scene understanding, and validated that our adapted traditional PFH-based 3D descriptors show excellent generalization ability across different domains. The second contribution is that we proposed a learning-based region merging strategy based on the affinity provided by both the traditional/learned 3D descriptors and learned semantics. The merging process takes both low-level geometric and high-level semantic feature correlations into consideration. Experimental results demonstrate that our framework has the best performance among the three most important weakly supervised point clouds understanding tasks including semantic segmentation, instance segmentation, and object detection even when very limited number of points are labeled. Our method, termed Region Merging 3D (RM3D), has superior performance on Scan-Net data-efficient learning online benchmarks and other four large-scale 3D understanding benchmarks under various experimental settings, outperforming current arts by a margin for various 3D understanding tasks without complicated learning strategies such as active learning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.