Chondromalacia patellae (CMP), also known as runner’s knee, typically occurs in young patients, which is characterized by anterior knee pain (AKP) that is associated with visible changes in patellar cartilage. The initial pathological changes include cartilage softening, swelling, and edema. CMP is caused by several factors, including trauma, increased cartilage vulnerability, patellofemoral instability, bony anatomic variations, abnormal patellar kinematics, and occupation hazards. CMP may be reversible or may progress to develop patellofemoral osteoarthritis. Quadriceps wasting, patellofemoral crepitus, and effusion are obvious clinical indications. Additionally, radiological examinations are also necessary for diagnosis. Magnetic resonance imaging (MRI) is a non-invasive diagnostic method, which holds a promise in having the unique ability to potentially identify cartilage lesions. Modalities are conventionally proposed to treat cartilage lesions in the PF joint, but none have emerged as a gold standard, neither to alleviated symptoms and function nor to prevent OA degeneration. Recently, researchers have been focused on cartilage-targeted therapy. Various efforts including cell therapy and tissue emerge for cartilage regeneration exhibit as the promising regime, especially in the application of mesenchymal stem cells (MSCs). Intra-articular injections of variously sourced MSC are found safe and beneficial for treating CMP with improved clinical parameters, less invasiveness, symptomatic relief, and reduced inflammation. The mechanism of MSC injection remains further clinical investigation and is tremendously promising for CMP treatment. In this short review, etiology, MRI diagnosis, and treatment in CMP, especially the treatment of the cell-based therapies, are reviewed.
Corona Virus Disease 2019 (COVID-19) continues to be a burden for human health since its outbreak in Wuhan, China in December 2019. Recently, the emergence of new variants of concerns (VOCs) is challenging for vaccines and drugs efficiency. In severe cases, SARS-CoV-2 provokes inappropriate hyperinflammatory immune responses leading to acute respiratory distress syndrome (ARDS) and even death. This process is regulated by inflammasomes which are activated after binding of the viral spike (S) protein to cellular angiotensin-converting enzyme 2 (ACE2) receptor and triggers innate immune responses. Therefore, the formation of “cytokines storm” leads to tissue damage and organ failure. NOD-like receptor family pyrin domain containing 3 (NLRP3) is the best studied inflammasome known to be activated during SARS-CoV-2 infection. However, some studies suggest that SARS-CoV-2 infection is associated with other inflammasomes as well; such as NLRP1, absent in melanoma-2 (AIM-2), caspase-4 and -8 which were mostly found during dsRNA virus or bacteria infection. Multiple inflammasome inhibitors that exist for other non-infectious diseases have the potential to be used to treat severe SARS-CoV-2 complications. Some of them have showed quite encouraging results during pre- and clinical trials. Nevertheless, further studies are in need for the understanding and targeting of SARS-Cov-2-induced inflammasomes; mostly an update of its role during the new VOCs infection is necessary. Hence, this review highlights all reported inflammasomes involved in SARS-CoV-2 infection and their potential inhibitors including NLRP3- and Gasdermin D (GSDMD)-inhibitors. Further strategies such as immunomodulators and siRNA are also discussed. As highly related to COVID-19 severe cases, developing inflammasome inhibitors holds a promise to treat severe COVID-19 syndrome effectively and reduce mortality.
Enterovirus A71, a non-enveloped single-stranded (+) RNA virus, enters host cells through three stages: attachment, endocytosis and uncoating. In recent years, receptors/co-receptors anchored on the host cell membrane and involved in this process have been continuously identified. Among these, hSCARB-2 was the first receptor revealed to specifically bind to a definite site of the EV-A71 viral capsid and plays an indispensable role during viral entry. It actually acts as the main receptor due to its ability to recognize all EV-A71 strains. In addition, PSGL-1 is the second EV-A71 receptor discovered. Unlike hSCARB-2, PSGL-1 binding is strain-specific; only 20% of EV-A71 strains isolated to date are able to recognize and bind it. Some other receptors, such as sialylated glycan, Anx 2, HS, HSP90, vimentin, nucleolin and fibronectin, were discovered successively and considered as “co-receptors” because, without hSCARB-2 or PSGL-1, they are not able to mediate entry. For cypA, prohibitin and hWARS, whether they belong to the category of receptors or of co-receptors still needs further investigation. In fact, they have shown to exhibit an hSCARB-2-independent entry. All this information has gradually enriched our knowledge of EV-A71’s early stages of infection. In addition to the availability of receptors/co-receptors for EV-A71 on host cells, the complex interaction between the virus and host proteins and various intracellular signaling pathways that are intricately connected to each other is critical for a successful EV-A71 invasion and for escaping the attack of the immune system. However, a lot remains unknown about the EV-A71 entry process. Nevertheless, researchers have been continuously interested in developing EV-A71 entry inhibitors, as this study area offers a large number of targets. To date, important progress has been made toward the development of several inhibitors targeting: receptors/co-receptors, including their soluble forms and chemically designed compounds; virus capsids, such as capsid inhibitors designed on the VP1 capsid; compounds potentially interfering with related signaling pathways, such as MAPK-, IFN- and ATR-inhibitors; and other strategies, such as siRNA and monoclonal antibodies targeting entry. The present review summarizes these latest studies, which are undoubtedly of great significance in developing a novel therapeutic approach against EV-A71.
Diabetes mellitus is a complex disorder characterized by insufficient insulin production or insulin resistance, which results in a lifelong dependence on glucose-lowering drugs for almost all patients. During the fight with diabetes, researchers are always thinking about what characteristics the ideal hypoglycemic drugs should have. From the point of view of the drugs, they should maintain effective control of blood sugar, have a very low risk of hypoglycemia, not increase or decrease body weight, improve β-cell function, and delay disease progression. Recently, the advent of oral peptide drugs, such as semaglutide, brings exciting hope to patients with chronic diabetes. Legumes, as an excellent source of protein, peptides, and phytochemicals, have played significant roles in human health throughout human history. Some legume-derived peptides with encouraging anti-diabetic potential have been gradually reported over the last two decades. Their hypoglycemic mechanisms have also been clarified at some classic diabetes treatment targets, such as the insulin receptor signaling pathway or other related pathways involved in the progress of diabetes, and key enzymes including α-amylase, α-glucosidase, and dipeptidyl peptidase-IV (DPP-4). This review summarizes the anti-diabetic activities and mechanisms of peptides from legumes and discusses the prospects of these peptide-based drugs in type 2 diabetes (T2D) management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.