Near-infrared (NIR) light penetrates tissue deeply, but its application to motor behavior stimulation has been limited by the lack of known genetic NIR light-responsive sensors. We designed and synthesized a Yb 3+ /Er 3+ /Ca 2+ -based lanthanide-doped upconversion nanoparticle (UCNP) that effectively converts 808 nm NIR light to green light emission. This UCNP is compatible with Chrimson, a cation channel activated by green light; as such, it can be used in the optogenetic manipulation of the motor behaviors of Caenorhabditis elegans. We show that this UCNP effectively activates Chrimson-expressing, inhibitory GABAergic motor neurons, leading to reduced action potential firing in the body wall muscle and resulting in locomotion inhibition. The UCNP also activates the excitatory glutamatergic DVC interneuron, leading to potentiated muscle action potential bursts and active reversal locomotion. Moreover, this UCNP exhibits negligible toxicity in neural development, growth, and reproduction, and the NIR energy required to elicit these behavioral and physiological responses does not activate the animal's temperature response. This study shows that UCNP provides a useful integrated optogenetic toolset, which may have wide applications in other experimental systems.
The optogenetic neuron ablation approach enables noninvasive remote decoding of specific neuron function within a complex living organism in high spatiotemporal resolution. However, it suffers from shallow tissue penetration of visible light with low ablation efficiency. This study reports a upconversion nanoparticle (UCNP)–based multiplex proteins activation tool to ablate deep‐tissue neurons for locomotion modulation. By optimizing the dopant contents and nanoarchitecure, over 300‐fold enhancement of blue (450–470 nm) and red (590–610 nm) emissions from UCNPs is achieved upon 808 nm irradiation. Such emissions simultaneously activate mini singlet oxygen generator and Chrimson, leading to boosted near infrared (NIR) light–induced neuronal ablation efficiency due to the synergism between singlet oxygen generation and intracellular Ca2+ elevation. The loss of neurons severely inhibits reverse locomotion, revealing the instructive role of neurons in controlling motor activity. The deep penetrance NIR light makes the current system feasible for in vivo deep‐tissue neuron elimination. The results not only provide a rapidly adoptable platform to efficient photoablate single‐ and multiple‐cells, but also define the neural circuits underlying behavior, with potential for development of remote therapy in diseases.
This work reports multicationic AIEgens for unimolecular photodynamic theranostics, and an investigation of the relationship between their structures and activities, including PDT performance, 2-photon bioimaging, and self-reporting characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.