Metabolic engineering of microorganisms such as Escherichia coli and Saccharomyces cerevisiae to produce high-value natural metabolites is often done through functional reconstitution of long metabolic pathways. Problems arise when parts of pathways require specialized environments or compartments for optimal function. Here we solve this problem through co-culture of engineered organisms, each of which contains the part of the pathway that it is best suited to hosting. In one example, we divided the synthetic pathway for the acetylated diol paclitaxel precursor into two modules, expressed in either S. cerevisiae or E. coli, neither of which can produce the paclitaxel precursor on their own. Stable co-culture in the same bioreactor was achieved by designing a mutualistic relationship between the two species in which a metabolic intermediate produced by E. coli was used and functionalized by yeast. This synthetic consortium produced 33 mg/L oxygenated taxanes, including a monoacetylated dioxygenated taxane. The same method was also used to produce tanshinone precursors and functionalized sesquiterpenes.
Harnessing lipogenic pathways and rewiring acyl-CoA and acyl-ACP (acyl carrier protein) metabolism in Yarrowia lipolytica hold great potential for cost-efficient production of diesel, gasoline-like fuels, and oleochemicals. Here we assessed various pathway engineering strategies in Y. lipolytica toward developing a yeast biorefinery platform for sustainable production of fuel-like molecules and oleochemicals. Specifically, acyl-CoA/acyl-ACP processing enzymes were targeted to the cytoplasm, peroxisome, or endoplasmic reticulum to generate fatty acid ethyl esters and fatty alkanes with tailored chain length. Activation of endogenous free fatty acids and the subsequent reduction of fatty acyl-CoAs enabled the efficient synthesis of fatty alcohols. Engineering a hybrid fatty acid synthase shifted the free fatty acids to a medium chain-length scale. Manipulation of alternative cytosolic acetyl-CoA pathways partially decoupled lipogenesis from nitrogen starvation and unleashed the lipogenic potential of Y. lipolytica. Taken together, the strategies reported here represent promising steps to develop a yeast biorefinery platform that potentially upgrades low-value carbons to high-value fuels and oleochemicals in a sustainable and environmentally friendly manner.
Microbial factories have been engineered to produce lipids from carbohydrate feedstocks for production of biofuels and oleochemicals. However, even the best yields obtained to date are insufficient for commercial lipid production. To maximize the capture of electrons generated from substrate catabolism and thus increase substrate-to-product yields, we engineered 13 strains of Yarrowia lipolytica with synthetic pathways converting glycolytic NADH into the lipid biosynthetic precursors NADPH or acetyl-CoA. A quantitative model was established and identified the yield of the lipid pathway as a crucial determinant of overall process yield. The best engineered strain achieved a productivity of 1.2 g/L/h and a process yield of 0.27 g-fatty acid methyl esters/g-glucose, which constitutes a 25% improvement over previously engineered yeast strains. Oxygen requirements of our highest producer were reduced owing to decreased NADH oxidization by aerobic respiration. We show that redox engineering could enable commercialization of microbial carbohydrate-based lipid production.
Conversion of carbohydrates to lipids at high yield and productivity is essential for cost-effective production of renewable biodiesel. Although some microorganisms can convert sugars to oils, conversion yields and rates are typically low due primarily to allosteric inhibition of the lipid biosynthetic pathway by saturated fatty acids. By reverse engineering the mammalian cellular obese phenotypes, we identified the delta-9 stearoyl-CoA desaturase (SCD) as a rate limiting step and target for the metabolic engineering of the lipid synthesis pathway in Yarrowia lipolytica. Simultaneous overexpression of SCD, Acetyl-CoA carboxylase (ACC1), and Diacylglyceride acyl-transferase (DGA1) in Y. lipolytica yielded an engineered strain exhibiting highly desirable phenotypes of fast cell growth and lipid overproduction including high carbon to lipid conversion yield (84.7% of theoretical maximal yield), high lipid titers (~55g/L), enhanced tolerance to glucose and cellulose-derived sugars. Moreover, the engineered strain featured a three-fold growth advantage over the wild type strain. As a result, a maximal lipid productivity of ~1g/L/h is obtained during the stationary phase. Furthermore, we showed that the engineered yeast required cytoskeleton remodeling in eliciting the obesity phenotype. Altogether, our work describes the development of a microbial catalyst with the highest reported lipid yield, titer and productivity to date. This is an important step towards the development of an efficient and cost-effective process for biodiesel production from renewable resources.
Cytochalasins are a group of fungal secondary metabolites with diverse structures and bioactivities, including cytochalasin E produced by Aspergillus clavatus, which is a potent anti-angiogenic agent. Here, we report the identification and characterization of the cytochalasin gene cluster from A. clavatus NRRL 1. As a producer of cytochalasin E and K, the genome of A. clavatus was analyzed and the ~30 kb ccs gene cluster was identified based on the presence of a polyketide synthase-nonribosomal peptide synthetases (PKS-NRPS) and a putative Baeyer-Villiger monooxygenase (BVMO). Deletion of the central PKS-NRPS gene, ccsA, abolished the production of cytochalasin E and K, confirming the association between the natural products and the gene cluster. Based on bioinformatic analysis, a putative biosynthetic pathway is proposed. Furthermore, overexpression of the pathway specific regulator ccsR elevated the titer of cytochalasin E from 25 mg/L to 175 mg/L. Our results not only shed light on the biosynthesis of cytochalasins, but also provided genetic tools for increasing and engineering the production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.