Collagen (Col)-chitosan (Chi) membrane was modified by a hot dehydrogenation cross-linking method. Carbodiimide was added for further crossing modification. Chondroitin sulfate (CS) was added so that Col-Chi sulfate composite membranes were prepared. The structure of the composite membranes was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy, and its mechanical properties, degradation, and cytotoxicity were characterized. The composite membrane was applied to a full-thickness skin injury in animal experiments performed in rabbits. Strong interactions and good compatibility among Col, Chi, and CS in the composite membrane were present. The good mechanical properties, biocompatibility, digestion resistance, and wound healing promotion of the composite membrane make it a potential wound dressing or skin scaffold for tissue engineering.
Transportation is an important resource for the sustainable development of the Qinghai-Tibet Plateau. It is of great practical significance to evaluate and study the law and mechanism of spatial and temporal differentiation of traffic dominance degree. Based on the methods of the Origin-Destination cost matrix, least squares method, and geographically weighted regression, this paper establishes a traffic dominance evaluation system at the county scale and discusses the spatial pattern and influence of traffic dominance in the Qinghai-Tibet Plateau from 2015 to 2019. The results show that: (1) The overall traffic construction of the Qinghai-Tibet Plateau has been accelerated, and the traffic accessibility between counties has been significantly enhanced; (2) The traffic dominance of the Qinghai-Tibet Plateau is significantly different from east to west, and the central area, with “Xining-Lhasa” as the axis, expands to the outer circle with an irregularly decreasing spatial pattern; and (3) The effect of rapid urbanization development and population carrying capacity enhancement on the traffic dominance of the Qinghai-Tibet Plateau has gradually increased, and the effect of elevation has been weakening from 2015 to 2019.
Previous studies suggest that triple-negative breast cancer (TNBC) may have unique imaging characteristics, however, studies focused on the imaging characteristics of TNBC are still limited. The aim of the present study is to analyze the ultrasonic characteristics of TNBC and to provide more reliable information on imaging diagnosis of TNBC. This retrospective study was performed including 162 TNBC patients with 184 TNBC lesions. 174 non-TNBC cases with 196 lesions were used as the control group. The median size of TNBC lesions and non-TNBC lesions were 23 mm × 16 mm and 21 mm × 15 mm, respectively. The shape of most breast cancer lesions was irregular. However, 15.30% (28/183) TNBC lesions and 16.84% (33/196) non-TNBC lesions were oval-shaped. Most breast cancer lesions (79.78% TNBC & 85.71% non-TNBC) were ill-defined. In comparison to non-TNBC, the distinctive ultrasonic characteristics of TNBC were summarized as three features: calcifications, posterior acoustic, and blood flow. Microcalcifications was less common in non-TNBC. The remarkable posterior acoustic characteristics on TNBC were no posterior acoustic features (136, 73.91%). Avascular pattern (21.74%) was also more common in TNBC. The other feature of TNBC was markedly hypoechoic lesions (23.91%). The above-mentioned differences between TNBC and non-TNBC were significant. 93.48% TBNC and 94.39% non–TNBC lesions were in BI-RADS-US category of 4A-5. The results indicate that TNBC has some distinctive ultrasound characteristics. Ultrasound is a useful adjunct in early detection of breast cancer. A combination of ultrasound with mammography is excellent for detecting breast cancer.
Despite the construction of several curved prestressed concrete girder bridges with corrugated steel webs (CSWs) around the world; their shear behavior has seldom been investigated. Accordingly, this paper substitutes the lack of available information on the global elastic shear buckling of a plane curved corrugated steel web (PCCSW) in a curved girder. This is based on the equilibrium equations and geometric equations in the elastic theory of classical shells, combined with the constitutive relation of orthotropic shells. Currently, the global elastic shear buckling process of the PCCSW in a curved girder is studied, for the first time in literature, with an equivalent orthotropic open circular cylindrical shell (OOCCS) model. The governing differential equation of global elastic shear buckling of the PCCSW, as well as its buckling strength, is derived by considering the orthotropic characteristics of a corrugated steel web, the rational trigonometric displacement modes, Galerkin’s method and variational principles. Additionally, the accuracy of the proposed theoretical formula is verified by comparison with finite element (FE) results. Moreover, the expressions of the inner or outer folded angle and radius of curvature are given by the cosine theorem of the trigonometric function and inverse trigonometric function. Subsequently, parametric analysis of the shear buckling behavior of the PCCSW is carried out by considering the cases where the radius of curvature is constant or variable. This parametric analysis highlights the effects of web dimensions, height-to-thickness ratio, aspect ratios of longitudinal and inclined panels, corrugation height, curvature radius and folded angles on the elastic shear buckling strength. As a result, this study provides a theoretical reference for the design and application of composite curved girders with CSWs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.