When high performance is expected, vibrations are becoming a burning issue in adaptive optics systems. For mitigation of these vibrations, in this paper, we propose a method to identify the vibration model. The nonlinear least squares algorithm named the Levenberg-Marquardt method is adapted to acquire the model parameters. The experimental validation of the high performance of vibration mitigation associated with our identification method has been accomplished. Benefiting from this method, vibrations have been significantly suppressed using linear quadratic Gaussian control, where the root-mean-square of the residual vibrations has been reduced down to a portion of a microradian. Moreover, the experimental results show that with the model identified, vibrations ranging from wide low-frequency perturbation to high-frequency vibration peaks can be dramatically mitigated, which is superior to classical control strategies.
In this paper, an aberration correction algorithm for wavefront sensorless adaptive optics system is presented, which is based on the approximately linear relation between the mean square of the aberration gradients and the second moment of far-field intensity distribution. To demonstrate algorithm's performance, an experiment system of aberration corrections for Fresnel zone plates imaging is set up. The correction results show the excellent performance of this method in correction speed, and correction capability. Comparing with conventional stochastic parallel gradient descent (SPGD) algorithm, the correction speed with this method is improved about four times for the similar correction effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.