A novel amphoteric ion exchange membrane (AIEM) was successfully prepared by one-step radiation grafting of sodium styrene sulfonate (SSS) and dimethylaminoethyl methacrylate (DMAEMA) onto ethylene-vinylalcohol copolymer (EVOH) powder and sequent transferring into film by casting method. Fourier transform infrared spectrometry (FT-IR), thermal gravimetric analyzer (TGA) and elemental analysis testified SSS and DMAEMA were successfully grafted onto EVOH. The ion exchange capacity, water uptake and proton conductivity of the resulting AIEM increased with grafting yield (GY). At the GY of 40.9%, the permeability of vanadium ions of AIEM was 3.98 × 10−7 cm2 min−1, which was better than Nafion117 membrane. Furthermore, the cost of this AIEM is much lower than that of Nafion117 membrane. This work provided a low cost and simple method for fabrication of the ion exchange membrane for vanadium redox flow battery (VRFB). Meanwhile, it also provided a new direction for the application of EVOH.
The electrochemical property of ordered mesoporous carbon (OMC) can be changed significantly due to the incorporating of electron-donating heteroatoms into OMC. Here, we demonstrate the successful fabrication of nitrogen-doped ordered mesoporous carbon (NOMC) materials to be used as carbon substrates for loading polyaniline (PANI) by in situ polymerization. Compared with NOMC, the PANI/NOMC prepared with a different mass ratio of PANI and NOMC exhibits remarkably higher electrochemical specific capacitance. In a typical three-electrode configuration, the hybrid has a specific capacitance about 276.1 F/g at 0.2 A/g with a specific energy density about 38.4 Wh/kg. What is more, the energy density decreases very slowly with power density increasing, which is a different phenomenon from other reports. PANI/NOMC materials exhibit good rate performance and long cycle stability in alkaline electrolyte (~ 80% after 5000 cycles). The fabrication of PANI/NOMC with enhanced electrochemical properties provides a feasible route for promoting its applications in supercapacitors.Electronic supplementary materialThe online version of this article (10.1186/s11671-018-2577-3) contains supplementary material, which is available to authorized users.
With the development and application of nanotechnology, large amounts of nanoparticles will be potentially released to the environment and possibly cause many severe health problems. Although the toxicity of nanoparticles has been investigated, prevention and treatment of damages caused by nanoparticles have been rarely studied. Therefore, isotope tracing and improved CT imaging techniques were used to investigate the biodistribution influence between oMWCNTs(oxidized multi-walled carbon nanotubes) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/or simvastatin (TD) in vivo. What’s more, biochemical indices in plasma and tissue histology were measured to further study therapeutic effects on the damages of oMWCNTs in mice. Isotope tracing and improved CT imaging results showed that low dosages of DOPC and TD didn’t affect the distribution of oMWCNTs in mice; conversely, the distribution and metabolism of DOPC and TD were influenced by oMWCNTs. Moreover, DOPC and/or TD improved the biocompatibility of oMWCNTs in erythrocyte suspension in vitro. Biochemical index and histopathological results indicated that DOPC and TD didn’t prevent injuries caused by oMWCNTs effectively. But TD showed a good therapeutic effect for damages. This study is the first to investigate prevention and treatment effects of drugs on damages caused by oMWCNTs and provides new insights and breakthroughs for management of nanoparticles on health hazards.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.