Correcting the forecast bias of numerical weather prediction models is important for severe weather warnings. The refined grid forecast requires direct correction on gridded forecast products, as opposed to correcting forecast data only at individual weather stations. In this study, a deep learning method called CU-net is proposed to correct the gridded forecasts of four weather variables from the European Centre for Medium-Range Weather Forecast Integrated Forecasting System global model (ECMWF-IFS): 2-m temperature, 2-m relative humidity, 10-m wind speed, and 10-m wind direction, with a forecast lead time of 24 h to 240 h in North China. First, the forecast correction problem is transformed into an image-to-image translation problem in deep learning under the CU-net architecture, which is based on convolutional neural networks. Second, the ECMWF-IFS forecasts and ECMWF reanalysis data (ERA5) from 2005 to 2018 are used as training, validation, and testing datasets. The predictors and labels (ground truth) of the model are created using the ECMWF-IFS and ERA5, respectively. Finally, the correction performance of CU-net is compared with a conventional method, anomaly numerical correction with observations (ANO). Results show that forecasts from CU-net have lower root mean square error, bias, mean absolute error, and higher correlation coefficient than those from ANO for all forecast lead times from 24 h to 240 h. CU-net improves upon the ECMWF-IFS forecast for all four weather variables in terms of the above evaluation metrics, whereas ANO improves upon ECMWF-IFS performance only for 2-m temperature and relative humidity. For the correction of the 10-m wind direction forecast, which is often difficult to achieve, CU-net also improves the correction performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.