To make a Born-Infeld (BI) black hole thermally stable, we consider two types of boundary conditions, i.e., the asymptotically anti-de Sitter (AdS) space and a Dirichlet wall placed in the asymptotically flat space. The phase structures and transitions of these two types of BI black holes, namely BI-AdS black holes and BI black holes in a cavity, are investigated in a grand canonical ensemble, where the temperature and the potential are fixed. For BI-AdS black holes, the globally stable phases can be the thermal AdS space. For small values of the potential, there is a Hawking-Page-like first order phase transition between the BI-AdS black holes and the thermal-AdS space.However, the phase transition becomes zeroth order when the values of the potential are large enough. For BI black holes in a cavity, the globally stable phases can be a naked singularity or an extremal black hole with the horizon merging with the wall, which both are on the boundaries of the physical parameter region. The thermal flat space is never globally preferred. Besides a first order phase transition, there is a second order phase transition between the globally stable phases.Thus, it shows that the phase structures and transitions of BI black holes with these two different boundary conditions have several dissimilarities.
Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper, we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential. This toy model captures key features of particle dynamics near a black hole horizon, and allows us to make three observations. First, we find that the chaotic behavior is stronger with the increases of the minimal length effects, which manifests that the maximum Lyapunov characteristic exponents mostly grow, and the KAM curves on Poincaré surfaces of section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scrambling time of black holes. Finally, it shows that some Lyapunov characteristic exponents can be greater than the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results reveal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.
Various quantum theories of gravity predict the existence of a minimal measurable length. In this paper, we study effects of the minimal length on the motion of a particle in the Rindler space under a harmonic potential. This toy model captures key features of particle dynamics near a black hole horizon and allows us to make three observations. First, we find that chaotic behavior becomes stronger with increases in minimal length effects, leading predominantly to growth in the maximum Lyapunov characteristic exponents, while the KAM curves on Poincaré surfaces of a section tend to disintegrate into chaotic layers. Second, in the presence of the minimal length effects, it can take a finite amount of Rindler time for a particle to cross the Rindler horizon, which implies a shorter scrambling time of black holes. Finally, the model shows that some Lyapunov characteristic exponents can be greater than the surface gravity of the horizon, violating the recently conjectured universal upper bound. In short, our results reveal that quantum gravity effects may make black holes prone to more chaos and faster scrambling.
We use the Melnikov method to identify chaotic behavior in geodesic motion perturbed by the minimal length effects around a Schwarzschild black hole. Unlike the integrable unperturbed geodesic motion, our results show that the perturbed homoclinic orbit, which is a geodesic joining the unstable circular orbit to itself, becomes chaotic in the sense that Smale horseshoes chaotic structure is present in phase space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.