Translocator Protein (18kDa, TSPO) is a mitochondrial outer membrane transmembrane protein. Its expression is elevated during inflammation and injury. However, the function of TSPO in vivo is still controversial. Here, we constructed a TSPO global knockout (KO) mouse with a Cre-LoxP system that abolished TSPO protein expression in all tissues and showed normal phenotypes in the physiological condition. The birth rates of TSPO heterozygote (Het) x Het or KO x KO breeding were consistent with Mendel’s Law, suggesting a normal viability of TSPO KO mice at birth. RNA-seq analysis showed no significant difference in the gene expression profile of lung tissues from TSPO KO mice compared with wild type mice, including the genes associated with bronchial alveoli immune homeostasis. The alveolar macrophage population was not affected by TSPO deletion in the physiological condition. Our findings contradict the results of Papadopoulos, but confirmed Selvaraj’s findings. This study confirms TSPO deficiency does not affect viability and bronchial alveolar immune homeostasis.
The new-generation wireless communication networks are envisioned to offer higher sum data rates along with the required level of fairness. Previous works tend to suffer from a decayed performance as subcarriers become relatively insufficient in allocation to users. To maximize the sum data rates and ensure the required level of proportional fairness, this paper presents a hybrid OFDMA resource allocation scheme which uses Hungarian algorithm combined with a greedy method for subcarrier allocation and uses bee colony optimization for power allocation. The proposed subcarrier allocation scheme can make full use of advantages of both globally optimal Hungarian algorithm in enhancing sum data rates and locally optimal greedy method in maintaining a reasonable fairness level and can make Hungarian algorithm work in a searching mode for further improvement of sum data rates and fairness. The proposed power allocation scheme can converge to the required level of proportional fairness but with higher sum data rates if the subcarrier allocation does not achieve the required fairness. Simulation results show that the proposed scheme can obtain the required level of proportional fairness but with higher sum data rates even if subcarriers are relatively insufficient in allocation to users. Complexity analysis shows the proposed method has moderate complexity.
Background The cytotoxin-associated gene A (cagA) is one of the most important virulence factors of Helicobacter pylori (H. pylori). There is a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal of CagA protein. This repeat region is thought to play an important role in the pathogenesis of gastrointestinal diseases. The aim of this study was to investigate the diversity of cagA 3′ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region of H. pylori, and their association with gastroduodenal diseases. Methods A total of 515 H. pylori strains from patients in 14 different geographical regions of China were collected. The genomic DNA from each strain was extracted and the cagA 3′ variable region was amplified by polymerase chain reaction (PCR). The PCR products were sequenced and analyzed using MEGA 7.0 software. Results A total of 503 (97.7%) H. pylori strains were cagA-positive and 1,587 EPIYA motifs were identified, including 12 types of EPIYA or EPIYA-like sequences. In addition to the four reported major segments, several rare segments (e.g., B′, B″ and D′) were defined and 20 different sequence types (e.g., ABD, ABC) were found in our study. A total of 481 (95.6%) strains carried the East Asian type CagA, and the ABD subtypes were most prevalent (82.1%). Only 22 strains carried the Western type CagA, which included AC, ABC, ABCC and ABCCCC subtypes. The CagA-ABD subtype had statistical difference in different geographical regions (P = 0.006). There were seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs, among which amino acids 893 and 894 had a statistical difference with gastric cancer (P = 0.004). Conclusions In this study, 503 CagA sequences were studied and analyzed in depth. In Chinese population, most H. pylori strains were of the CagA-ABD subtype and its presence was associated with gastroduodenal diseases. Amino acid polymorphisms at residues 893 and 894 flanking the EPIYA motifs had a statistically significant association with gastric cancer.
Background: The cytotoxin-associated gene A (cagA) is one of the most important virulence factors of Helicobacter pylori (H. pylori). There is a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal of CagA protein. This repeat region is thought to play an important role in the pathogenesis of gastrointestinal diseases. The aim of this study was to investigate the diversity of cagA 3’ variable region and the amino acid polymorphisms in the EPIYA segments of the CagA C-terminal region of H. pylori, and their association with gastroduodenal diseases.Methods: A total of 515 H. pylori strains from patients in 14 different geographical regions of China were collected. The genomic DNA from each strain was extracted and the cagA 3’ variable region was amplified by polymerase chain reaction (PCR). The PCR products were sequenced and analyzed using MEGA 7.0 software.Results: A total of 503 (97.7%) H. pylori strains were cagA-positive and 1,587 EPIYA motifs were identified, including 12 types of EPIYA or EPIYA-like sequences. In addition to the four reported major segments, several rare segments (e.g., B’, B’’ and D’) were defined and 20 different sequence types (e.g., ABD, ABC) were found in our study. A total of 481 (95.6%) strains carried the East Asian type CagA, and the ABD subtypes were most prevalent (82.1%). Only 22 strains carried the Western type CagA, which include AC, ABC, ABCC and ABCCCC subtypes. The CagA-ABD subtype had statistical difference in different geographic regions (P = 0.006). There are seven amino acid polymorphisms in the sequences surrounding the EPIYA motifs, among which amino acid residue 893 and 894 had a statistical difference with gastric cancer (P = 0.004).Conclusions: In this study, 503 CagA sequences was studied and analyzed in depth. In Chinese population, most H. pylori strains are of the CagA-ABD subtype and its presence was associated with gastroduodenal diseases. Amino acid polymorphisms at residue 893 and 894 flanking the EPIYA motif had a statistically significant association with gastric cancer.
Background: There were geographical differences in the distribution of Helicobacter pylori (H. pylori) genotypes (cagA, vacA, iceA, oipA and dupA, et al). The population in different regions in China have grant different patterns of gastroduodenal diseases which are associated with these genotypes, but the geographical characteristics of H. pylori genotypes were still unknown. Materials and Methods: Gastric biopsy specimens were obtained from 348 patients from five regions in China. The regional distribution was 89 patients from Shandong, 91 from Guangxi, 57 from Hunan, 58 from Qinghai and 53 from Heilongjiang. DNA extracted from cultured isolates were analyzed by polymerase chain reaction (PCR) to determine the presence of cagA, vacA, iceA, oipA and dupA genotypes.Results: A total of 269 H. pylori isolates were obtained, of which 74 isolates were from Shandong, 78 from Guangxi, 46 from Hunan, 33 from Qinghai and 38 from Heilongjiang. The cagA gene was predominant in all the five regions (e.g. 100% in Hunan, Qinghai and Heilongjiang). The predominant vacA genotypes in the 269 isolates were s1a (88.1%) and m1(72.1%). vacA s1b was not detected in our study. In strains from Guangxi and Hunan, s1c was dominant; in contrast, s1a was dominant in Shandong, Qinghai and Heilongjiang. The prevalence of m1 strains in Heilongjiang (92.1%) was significantly higher (P<0.001) than in Shandong (60.8%) and Qinghai (51.5%). The dominant vacA subtype combination was s1a/m1 (62.8%) and detection of vacA s1a/m1 was significantly high 34 (89.5%) in Heilongjiang strains (P<0.001). The prevalence of iceA alleles in Hunan and Qinghai was much higher than that in the other three regions, and the difference was statistically significant. The oipA-positive strains were more prevalent in Guangxi (100%) and Hunan (100%) than in Qinghai (78.8%) (P<0.001). Conversely, the dupA-positive strains were less than half in Guangxi (15.4%) and Shandong (32.4%), whereas it was 73.9% in Hunan and 81.8% in Qinghai (P<0.001).Conclusions: There are significant geographic differences in the distribution of H. pylori genotypes. These datas may be used to explain the gastroduodenal diseases patterns in different geographic regions of China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.