Background
Immunotherapy has shown promising efficacy in patients with nasopharyngeal carcinoma (NPC). Lymphocyte activating 3 gene (LAG-3) represents a significant immune target, however, its relationship with NPC remains unclear. This study aimed to evaluate LAG-3 expression in NPC and its association with CD3+ tumor-infiltrating lymphocytes (TILs), Granzyme B (GZMB), programmed death ligand 1 (PD-L1), and programmed death 1 (PD-1) expression.
Methods
A total of 182 patients with NPC from Sun Yat-sen University Cancer Center, China, were included in this retrospective study. LAG-3 expression in 15 NPC cell lines and LAG-3, CD3+ TILs, GZMB, PD-L1 and PD-1 in clinical samples were estimated using immunohistochemistry. The Chi-square test was used to estimate the association between LAG-3, other biomarkers, and clinical characteristics. Survival analysis was performed using the Kaplan–Meier method and the Cox regression model.
Results
LAG-3 was negatively expressed in all of the 15 NPC cell lines, whereas, 147 patients with NPC (80.8%) exhibited high LAG-3 expression on TILs from tumor tissues. Male patients and those who were EBV-positive presented higher LAG-3 expression. Correlation analyses showed that LAG-3 expression was related to PD-1 expression on TILs, as well as, PD-L1 expression on tumor cells (TCs) and TILs. Both the univariate and multivariate Cox models indicated that pathological type III (P = 0.036), higher LAG-3 on TILs (P < 0.001), higher PD-L1 on TCs (P = 0.027), and higher PD-1 on TILs (P < 0.001) were associated with poorer disease-free survival (DFS). However, lower PD-L1 expression on TILs was related to superior DFS only in the univariate Cox analyses (P = 0.002).
Conclusion
Higher LAG-3 and PD-1 on TILs, and higher PD-L1 expression on TCs, and pathological type III were identified as independent risk factors for poorer DFS in NPC patients. Our data demonstrate that LAG-3 is a promising inhibitory receptor that may play an important role in anti-NPC therapy.
Advanced nasopharyngeal carcinoma (NPC) has a poor prognosis, with an unfavorable response to palliative chemotherapy. Unfortunately, there are few effective therapeutic regimens. Therefore, we require novel treatment strategies with enhanced efficacy. The present study aimed to investigate the antitumor efficacy of APG-1252-M1, a dual inhibitor of BCL-2/BCL-XL, as a single agent and combined with gemcitabine. We applied various apoptotic assays and used subcutaneous transplanted NPC model to assess the in vitro and in vivo antitumor activity. Moreover, phospho-tyrosine kinase array was used to investigate the combined therapy’s potential synergistic mechanism. In addition, further validation was performed using immunohistochemistry and western blotting. In vitro, we observed that APG-1252-M1 had moderate antitumor activity toward NPC cells; however, it markedly improved gemcitabine’s ability to promote NPC cell apoptosis and suppress invasion, migration, and proliferation. Specifically, APG-1252 plus gemcitabine exhibited even remarkable antitumor activity in vivo. Mechanistically, the drug combination synergistically suppressed NPC by activating caspase-dependent pathways, blocking the phospho (p)-JAK-2/STAT3/MCL-1 signaling pathway, and inhibiting epithelial-mesenchymal transition. In conclusion, the results indicated that the combination of APG-1252 and gemcitabine has synergistic anticancer activities against NPC, providing a promising treatment modality for patients with NPC.
Background
Cancer patients often exhibit chemotherapy-associated changes in serum lipid profiles, however, their prognostic value before and after adjuvant chemotherapy on survival among non-small-cell lung cancer (NSCLC) patients is unknown.
Methods
NSCLC patients undergoing radical resection and subsequent adjuvant chemotherapy from 2013 to 2017 at Sun Yat-sen University Cancer Center were retrospectively reviewed. Fasted serum lipid levels were measured before and after chemotherapy. The optimal lipid cut-off values at baseline and fluctuation were determined using X-tile™. The fluctuations in serum lipid levels and disease-free survival (DFS) were assessed.
Results
Serum cholesterol, low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein-cholesterol (HDL-C), triglyceride, apolipoprotein (Apo) A-I, and ApoB all significantly increased after adjuvant chemotherapy. X-tile determined 1.52 mmol/L of HDL-C and 0.74 g/L of ApoB as the optimal cut-off values before chemotherapy. Patients with HDL-C ≥ 1.52 mmol/L (median DFS: not reached vs. 26.30 months, P = 0.0005) and a decreased HDL-C level after adjuvant chemotherapy (median DFS: 80.43 vs. 26.12 months, P = 0.0204) had a longer DFS. An HDL-C level that increased by ≥ 0.32 mmol/L after chemotherapy indicated a worse DFS. A high baseline ApoB level were associated with a superior DFS. In the univariate analysis and the multivariate Cox analyses, a high baseline HDL-C level and a HDL-C reduction after adjuvant chemotherapy were independent indicators for superior DFS. High baseline HDL-C was related to N0-1 stage (χ2 = 6.413, P = 0.011), and HDL-C fluctuation was significantly correlated with specific chemotherapy regimens (χ2 = 5.002, P = 0.025).
Conclusions
Adjuvant chemotherapy increased various lipid levels in resected NSCLC patients. A higher HDL-C level before chemotherapy and a reduced HDL-C level after adjuvant chemotherapy were independent predictors of longer DFS in patients with curable NSCLC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.