BackgroundDuring the past six decades, remarkable success on malaria control has been made in China. The major experience could be shared with other malaria endemic countries including Tanzania with high malaria burden. Especially, China’s 1–3-7 model for malaria elimination is one of the most important refined experiences from many years’ efforts and key innovation measures for malaria elimination in China.MethodsThe China-UK-Tanzania pilot project on malaria control was implemented from April, 2015 to June, 2018, which was an operational research with two communities receiving the proposed interventions and two comparable communities serving as control sites. The World Health Organization “Test, Treat, Track” (WHO-T3) Initiative, which calls for every suspected case to receive a diagnostic test, every confirmed case to be treated, and for the disease to be tracked, was integrated with Chinese experiences on malaria control and elimination for exploration of a proper model tailored to the local settings. Application of China’s 1–3-7 model integrating with WHO-T3 initiative and local resources aiming at reducing the burden of malaria in terms of morbidity and mortality by 30% in the intervention communities in comparison with that at the baseline survey.DiscussionThe China-UK-Tanzania pilot project on malaria control was that at China's first pilot project on malaria control in Africa, exploring the feasibility of Chinese experiences by China-Africa collaboration, which is expected that the strategies and approaches used in this project could be potential for scaling up in Tanzania and African countries, and contribute to the acceleration of malaria control and elimination in Africa.Electronic supplementary materialThe online version of this article (10.1186/s40249-018-0507-3) contains supplementary material, which is available to authorized users.
Background: In 2015, a China-UK-Tanzania tripartite pilot project was implemented in southeastern Tanzania to explore a new model for reducing malaria burden and possibly scaling-out the approach into other malaria-endemic countries. The 1,7-malaria Reactive Community-based Testing and Response (1,7-mRCTR) which is a locally-tailored approach for reporting febrile malaria cases in endemic villages was developed to stop transmission and Plasmodium life-cycle. The (1,7-mRCTR) utilizes existing health facility data and locally trained community health workers to conduct community-level testing and treatment. Methods: The pilot project was implemented from September 2015 to June 2018 in Rufiji District, southern Tanzania. The study took place in four wards, two with low incidence and two with a higher incidence. One ward of each type was selected for each of the control and intervention arms. The control wards implemented the existing Ministry of Health programmes. The 1,7-mRCTR activities implemented in the intervention arm included community testing and treatment of malaria infection. Malaria case-to-suspect ratios at health facilities (HF) were aggregated by villages, weekly to identify the village with the highest ratio. Community-based mobile test stations (cMTS) were used for conducting mass testing and treatment. Baseline (pre) and endline (post) household surveys were done in the control and intervention wards to assess the change in malaria prevalence measured by the interaction term of 'time' (post vs pre) and arm in a logistic model. A secondary analysis also studied the malaria incidence reported at the HFs during the intervention. Results: Overall the 85 rounds of 1,7-mRCTR conducted in the intervention wards significantly reduced the odds of malaria infection by 66% (adjusted OR 0.34, 95% CI 0.26,0.44, p < 0001) beyond the effect of the standard programmes.
During May-August 2013, a malaria outbreak comprising 874 persons in Shanglin County, China, was detected among 4,052 persons returning from overseas. Ghana was the predominant destination country, and 92.3% of malarial infections occurred in gold miners. Preventive measures should be enhanced for persons in high-risk occupations traveling to malaria-endemic countries.
BackgroundMalaria is one of the most serious vector-borne diseases in the world. Vector control is an important measure for malaria prevention and elimination. However, this strategy is under threat as disease vectors are developing resistance to insecticides. Therefore, it is important to monitor mechanisms responsible for insecticide resistance. In this study, the presence of G119S mutation in the acetyl cholinesterase-encoding gene (ace-1) was investigated in nine Anopheles sinensis populations sampled across Guangxi Zhuang Autonomous Region China.MethodsPCR–RFLP (polymerase chain reaction-restriction fragment length polymorphism) method was used to genotype each individual adult of An. sinensis. Direct sequencing of PCR products was performed to verify the accuracy of PCR–RFLP genotyping result. Population genetics analysis was conducted using Genepop programme.ResultsThe frequencies of susceptible homozygotes, heterozygotes and resistant homozygotes in the nine populations ranged between 0–0.296, 0.143–0.500 and 0.333–0.857, respectively. Overall, a high frequency (0.519–0.929) of mutant 119S allele was observed and the genotype frequency of the ace-1 gene of An. sinensis was at Hardy–Weinberg equilibrium in each of the nine examined populations.ConclusionThe G119S mutation has become fixed and is widespread in An. sinensis field populations in Guangxi, China. These findings are useful in helping design strategies for An. sinensis control.
Objectives: In this study, we aimed to analyse the genetic diversity Kelch 13 (K13) propeller allele of the Plasmodium falciparum isolates mainly imported from Southeast Asia and Africa in southern China, including the provinces of Yunnan and Guangxi. Methods: At enrolment, we collected blood samples from patients with confirmed cases of malaria infection between January 2012 and December 2017, for analysis. Individual patient information was obtained via a malaria surveillance system. The malaria infections and P. falciparum K13 mutations were diagnosed by using a nested polymerase chain reaction (PCR) method. Results: The K13 mutations were identified in 283 P. falciparum isolates from 18 counties in Yunnan and 22 counties in Guangxi. Of Forty-six isolates (46/283, 16.3%) that harbored K13 mutant alleles were detected: 26.8% in Yunnan (33/123) and 8.1% in Guangxi (13/160). A total of 18 different K13 mutations were detected. Only the F446I mutation was detected in Yunnan isolates, and F446I was more frequent (20/46, 43.5%) than other alleles. Further, the temporal distribution of the F446I mutation ratio from 2012 to 2015 exhibited no significant difference in Yunnan Province (2012, 2/13, 15.4%; 2013, 7/40, 17.5%; 2014, 7/33, 21.2%; 2015, 4/37, 10.8%, p = 0.121). A578S allele was the main K13 mutation (5/283, 1.8%) from Africa. The K13 mutants were present in 33.3% of indigenous isolates, 27.4% of isolates from Southeast Asia, and 7.9% of isolates from Africa. The analysis of 10 neutral microsatellite loci of 60 isolates showed that at the TAA109 locus, the expected heterozygosity of F446I ( H e = 0.112 ± 0.007) was much lower than that of wild type and other mutation types in Myanmar isolates. With respect to geographic distribution, TAA109 also exhibited a significant difference between isolates from Southeast Asia ( H e = 0.139 ± 0.012) and those from Africa ( H e = 0.603 ± 0.044). Conclusions: The present findings on the geographic diversity of K13 mutant alleles in P. falciparum may provide a basis for routine molecular surveillance and risk assessment, to monitor artemisinin resistance (ART) in China. Our results will be helpful for enriching the artemisinin resistance database in China during the elimination and post-elimination phases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.