A multi-cyclic redundancy check (Multi-CRC) polar code construction algorithm is proposed in this paper to solve the error propagation problem of successive cancellation decoding for polar codes. In this algorithm, the information sequence is optimized into several segments to allow decoding errors to be corrected in time, minimizing the impact of error propagation. An improved multi-successive cancellation bit flipping (M-SCFlip) decoding algorithm is proposed to execute the bit flipping operation after CRC check-in each segment. In the low-SNR region, the proposed new multi-CRC polar code with successive cancellation list (SCL) decoding has a slight frame-error rate (FER) degradation compared with the original CRC polar code. With the M-SCFlip decoding algorithm developed in this paper, it achieves a better FER performance compared with the CRC polar code with successive cancellation (SC) and SCL (L = 2) decoding algorithms. In addition, it has a lower decoding delay and requires a lower memory space. For example, at a FER of 10 −4 with the same code length and effective code rate, the proposed multi-CRC polar code with M-CFlip decoding achieves a 1.19 dB and 0.79 dB gains over existing CRC polar codes with the SC and SCL (L = 2) decoding algorithms, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.