Expression and function of selenoproteins in endocrine tissues remain unclear, largely due to limited sample availability. Pigs have a greater metabolic similarity and tissue size than rodents as a model of humans for that purpose. We conducted 2 experiments: 1) we cloned 5 novel porcine selenoprotein genes; and 2) we compared the effects of dietary selenium (Se) on mRNA levels of 12 selenoproteins, activities of 4 antioxidant enzymes, and Se concentrations in testis, thyroid, and pituitary with those in liver of pigs. In Experiment 1, porcine Gpx2, Sephs2, Sep15, Sepn1, and Sepp1 were cloned and demonstrated 84-94% of coding sequence homology to human genes. In Experiment 2, weanling male pigs (n = 30) were fed a Se-deficient (0.02 mg Se/kg) diet added with 0, 0.3, or 3.0 mg Se/kg as Se-enriched yeast for 8 wk. Although dietary Se resulted in dose-dependent increases (P < 0.05) in Se concentrations and GPX activities in all 4 tissues, it did not affect the mRNA levels of any selenoprotein gene in thyroid or pituitary. Testis mRNA levels of Txnrd1 and Sep15 were decreased (P < 0.05) by increasing dietary Se from 0.3 to 3.0 mg/kg. Comparatively, expressions of Gpx2, Gpx4, Dio3, and Sep15 were high in pituitary and Dio1, Sepp1, Sephs2, and Gpx1 were high in liver. In conclusion, the mRNA abundances of the 12 selenoprotein genes in thyroid and pituitary of young pigs were resistant to dietary Se deficiency or excess.
We previously determined the effects of dietary selenium (Se) deficiency or excess on mRNA abundance of 12 selenoprotein genes in pig tissues. In this study, we determined the effect of dietary Se on mRNA levels of the remaining porcine selenoprotein genes along with protein production of 4 selenoproteins (Gpx1, Sepp1, Selh, and Sels) and body glucose homeostasis. Weanling male pigs (n = 24) were fed a Se-deficient (<0.02 mg Se/kg), basal diet supplemented with 0, 0.3, or 3.0 mg Se/kg as Se-enriched yeast (Angel Yeast) for 16 wk. Although mRNA abundance of the 13 selenoproteins in 10 tissues responded to dietary Se in 3 patterns, there was no common regulation for any given gene across all tissues or for any given tissue across all genes. Dietary Se affected (P < 0.05) 2, 3, 3, 5, 6, 7, 7, and 8 selenoprotein genes in muscle, hypothalamus, liver, kidney, heart, spleen, thyroid, and pituitary, respectively. Protein abundance of Gpx1, Sepp1, Selh, and Sels in 6 tissues was regulated (P < 0.05) by dietary Se concentrations in 3 ways. Compared with those fed 0.3 mg Se/kg, pigs fed 3.0 mg Se/kg became hyperinsulinemic (P < 0.05) and had lower (P < 0.05) tissue levels of serine/threonine protein kinase. In conclusion, dietary Se exerted no global regulation of gene transcripts or protein levels of individual selenoproteins across porcine tissues. Pigs may be a good model for studying mechanisms related to the potential prodiabetic risk of high-Se intake in humans.
Although supranutrition of selenium (Se) is considered a promising anti-cancer strategy, recent human studies have shown an intriguing association between high body Se status and diabetic risk. This study was done to determine if a prolonged high intake of dietary Se actually induced gestational diabetes in rat dams and insulin resistance in their offspring. Forty-five 67-day-old female Wistar rats (n=15/diet) were fed a Se-deficient (0.01 mg/kg) corn–soy basal diet (BD) or BD+Se (as Se-yeast) at 0.3 or 3.0 mg/kg from 5 weeks before breeding to day 14 postpartum. Offspring (n=8/diet) of the 0.3 and 3.0 mg Se/kg dams were fed with the same respective diet until age 112 days. Compared with the 0.3 mg Se/kg diet, the 3.0 mg/kg diet induced hyperinsulinemia (P<0.01), insulin resistance (P<0.01), and glucose intolerance (P<0.01) in the dams at late gestation and/or day 14 postpartum and in the offspring at age 112 days. These impairments concurred with decreased (P<0.05) mRNA and/or protein levels of six insulin signal proteins in liver and muscle of dams and/or pups. Dietary Se produced dose-dependent increases in Gpx1 mRNA or GPX1 activity in pancreas, liver, and erythrocytes of dams. The 3.0 mg Se/kg diet decreased Selh (P<0.01), Sepp1 (P=0.06), and Sepw1 (P<0.01), but increased Sels (P<0.05) mRNA levels in the liver of the offspring, compared with the 0.3 mg Se/kg diet. In conclusion, supranutrition of Se as a Se-enriched yeast in rats induced gestational diabetes and insulin resistance. Expression of six selenoprotein genes, in particular Gpx1, was linked to this metabolic disorder.
Fast-growing broiler chicks are susceptible to Se deficiency diseases including exudative diathesis (ED). Our objective was to determine if ED could be induced by feeding a current, practical diet and if the incidence was related to selenogenome expression in liver and muscle of chicks. Four groups of day-old broiler chicks (n = 60/group) were fed a corn-soy basal diet (BD; 14 μg Se/kg; produced in the Se-deficient area of Sichuan, China and not supplemented with Se or vitamin E), the BD and all-rac-α-tocopheryl acetate at 50 mg/kg and Se (as sodium selenite) at 0.3 mg/kg, or both of these nutrients for 6 wk. A high incidence of ED and mortality of chicks were induced by the BD. The incidences and mortality were completely prevented by supplemental dietary Se but were only partially decreased by supplemental α-tocopherol acetate. Dietary Se deficiency decreased (P < 0.05) mRNA levels of 7 common selenoprotein genes (Gpx1, Gpx4, Sepw1, Sepn1, Sepp1, Selo, and Selk) in muscle and liver. Whereas supplementing α-tocopherol acetate enhanced (P < 0.05) only the muscle Sepx1 mRNA level, it actually decreased (P < 0.05) hepatic Gpx1, Seli, Txnrd1, and Txnrd2 mRNA levels. In conclusion, dietary Se protected chicks from the Se deficiency disease ED, probably by upregulating selenoprotein genes coding for oxidation- and/or lesion-protective proteins. The protection by vitamin E might be mediated via selenoproteins not assayed in this study and/or Se-independent mechanisms. The inverse relationship between hepatic expression of 4 redox-related selenoprotein genes and vitamin E status revealed a novel interaction between Se and vitamin E in vivo.
Introduction Immune checkpoint inhibitors (ICIs) are effective in the treatment of advanced esophageal squamous cell carcinoma (ESCC); however, their efficacy in locally advanced resectable ESCC and the potential predictive biomarkers have limited data. Methods In this study, locally advanced resectable ESCC patients were enrolled and received neoadjuvant toripalimab (240 mg, day 1) plus paclitaxel (135 mg/m2, day 1) and carboplatin (area under the curve 5 mg/mL per min, day 1) in each 3-week cycle for 2 cycles, followed by esophagectomy planned 4-6 weeks after preoperative therapy. The primary endpoints were safety, feasibility, and the major pathological response (MPR) rate; the secondary endpoints were the pathological complete response (pCR) rate, disease-free survival (DFS), and overall survival (OS). Association between molecular signatures/tumor immune microenvironment and treatment response was also explored. Results Twenty resectable ESCC patients were enrolled. Treatment-related adverse events (AEs) occurred in all patients (100%), and 4 patients (22.2%) experienced grade 3 or higher treatment-related AEs. Sixteen patients underwent surgery without treatment-related surgical delay, and the R0 resection rate was 87.5% (14/16). Among the 16 patients, the MPR rate was 43.8% (7/16) and the pCR rate was 18.8% (3/16). The abundance of CD8+ T cells in surgical specimens increased (P = .0093), accompanied by a decreased proportion of M2-type tumor-associated macrophages (P = .036) in responders upon neoadjuvant therapy. Responders were associated with higher baseline gene expression levels of CXCL5 (P = .03) and lower baseline levels of CCL19 (P = .017) and UMODL1 (P = .03). Conclusions The combination of toripalimab plus paclitaxel and carboplatin is safe, feasible, and effective in locally advanced resectable ESCC, indicating its potential as a neoadjuvant treatment for ESCC. Clinical Trial registration NCT04177797
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.