Since 2002, beta coronaviruses (CoV) have caused three zoonotic outbreaks, SARS-CoV in 2002, MERS-CoV in 2012, and the newly emerged SARS-CoV-2 in late 2019. However, little is currently known about the biology of SARS-CoV-2. Here, using SARS-CoV-2 S protein pseudovirus system, we confirm that human angiotensin converting enzyme 2 (hACE2) is the receptor for SARS-CoV-2, find that SARS-CoV-2 enters 293/hACE2 cells mainly through endocytosis, that PIKfyve, TPC2, and cathepsin L are critical for entry, and that SARS-CoV-2 S protein is less stable than SARS-CoV S. Polyclonal anti-SARS S1 antibodies T62 inhibit entry of SARS-CoV S but not SARS-CoV-2 S pseudovirions. Further studies using recovered SARS and COVID-19 patients' sera show limited cross-neutralization, suggesting that recovery from one infection might not protect against the other. Our results present potential targets for development of drugs and vaccines for SARS-CoV-2. 1 1234567890():,;C oronaviruses (CoVs) infect human and animals and cause varieties of diseases, including respiratory, enteric, renal, and neurological diseases 1 . They are classified into four genera, alpha-CoV, beta-CoV, gamma-CoV, and delta-CoV 2 . Since beginning of this century, there have already been three zoonotic outbreaks of beta-CoVs. In 2002-2003, severe acute respiratory syndrome coronavirus (SARS-CoV) 3,4 , a lineage B beta-CoV, emerged from bat and palm civet 5,6 , and infected over 8000 people and caused about 800 deaths 7 . In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV), a lineage C beta-CoV, was discovered as the causative agent of a severe respiratory syndrome in Saudi Arabia 8 , currently with 2494 confirmed cases and 858 deaths 9 , it remains endemic in Middle East, and dromedary camel is considered as the zoonotic reservoir host of MERS-CoV. At the end of 2019, a novel coronavirus, named SARS-CoV-2, was found in patients with severe pneumonia in Wuhan, China 10-12 . Viruses were isolated from patients and sequenced. Phylogenetical analysis revealed that it is a lineage B beta-CoV and closely related to a SARS-like (SL) CoV, RaTG13, discovered in a cave of Yunnan, China, in 2013 13 . They share about 96% nucleotide sequence identities, suggesting that SARS-CoV-2 might have emerged from a Bat SL-CoV. However, the intermediate host or whether there is an intermediate host remains to be determined.CoV uses its spike glycoprotein (S), a main target for neutralization antibody, to bind its receptor, and mediate membrane fusion and virus entry. Each monomer of trimeric S protein is about 180 kDa, and contains two subunits, S1 and S2, mediating attachment and membrane fusion, respectively. In the structure, N-and C-terminal portions of S1 fold as two independent domains, N-terminal domain (NTD) and C-terminal domain (C-domain) (Fig. 1a). Depending on the virus, either NTD or Cdomain can serve as the receptor-binding domain (RBD). While RBD of mouse hepatitis virus (MHV) is located at the NTD 14 , most of other CoVs, including SARS-CoV and MERS-CoV use C-...
In eukaryotes, post-translational modification of histones is critical for regulation of chromatin structure and gene expression. EZH2 is the catalytic subunit of the polycomb repressive complex 2 (PRC2) and is involved in repressing gene expression through methylation of histone H3 on lysine 27 (H3K27). EZH2 overexpression is implicated in tumorigenesis and correlates with poor prognosis in several tumour types. Additionally, somatic heterozygous mutations of Y641 and A677 residues within the catalytic SET domain of EZH2 occur in diffuse large B-cell lymphoma (DLBCL) and follicular lymphoma. The Y641 residue is the most frequently mutated residue, with up to 22% of germinal centre B-cell DLBCL and follicular lymphoma harbouring mutations at this site. These lymphomas have increased H3K27 tri-methylation (H3K27me3) owing to altered substrate preferences of the mutant enzymes. However, it is unknown whether specific, direct inhibition of EZH2 methyltransferase activity will be effective in treating EZH2 mutant lymphomas. Here we demonstrate that GSK126, a potent, highly selective, S-adenosyl-methionine-competitive, small-molecule inhibitor of EZH2 methyltransferase activity, decreases global H3K27me3 levels and reactivates silenced PRC2 target genes. GSK126 effectively inhibits the proliferation of EZH2 mutant DLBCL cell lines and markedly inhibits the growth of EZH2 mutant DLBCL xenografts in mice. Together, these data demonstrate that pharmacological inhibition of EZH2 activity may provide a promising treatment for EZH2 mutant lymphoma.
The role of clinical laboratory data in the differential diagnosis of the severe forms of COVID-19 has not been definitely established. The aim of this study was to look for the warning index in severe COVID-19 patients. We investigated 43 adult patients with COVID-19. The patients were classified into mild group (28 patients) and severe group (15 patients). A comparison of the hematological parameters between the mild and severe groups showed significant differences in interleukin-6 (IL-6), D-dimer (D-D), glucose, thrombin time, fibrinogen, and C-reactive protein (P < .05). The optimal threshold and area under the receiver operator characteristic curve (ROC) of IL-6 were 24.3 and 0.795 µg/L, respectively, while those of D-D were 0.28 and 0.750 µg/L, respectively. The area under the ROC curve of IL-6 combined with D-D was 0.840. The specificity of predicting the severity of COVID-19 during IL-6 and D-D tandem testing was up to 93.3%, while the sensitivity of IL-6 and D-D by parallel test in the severe COVID-19 was 96.4%. IL-6 and D-D were closely related to the occurrence of severe COVID-19 in the adult patients, and their combined detection had the highest specificity and sensitivity for early prediction of the severity of COVID-19 patients, which has important clinical value. K E Y W O R D S D-dimer, diagnostic utility, IL-6, the severe COVID-19
We present a strategy to design and construct self-assembling DNA nanostructures that define intricate curved surfaces in three-dimensional (3D) space using the DNA origami folding technique. Double-helical DNA is bent to follow the rounded contours of the target object, and potential strand crossovers are subsequently identified. Concentric rings of DNA are used to generate in-plane curvature, constrained to 2D by rationally designed geometries and crossover networks. Out-of-plane curvature is introduced by adjusting the particular position and pattern of crossovers between adjacent DNA double helices, whose conformation often deviates from the natural, B-form twist density. A series of DNA nanostructures with high curvature--such as 2D arrangements of concentric rings and 3D spherical shells, ellipsoidal shells, and a nanoflask--were assembled.
The EZH2 histone methyltransferase is highly expressed in germinal center (GC) B-cells and targeted by somatic mutations in B-cell lymphomas. Here we find that EZH2 deletion or pharmacologic inhibition suppresses GC formation and functions in mice. EZH2 represses proliferation checkpoint genes and helps establish bivalent chromatin domains at key regulatory loci to transiently suppress GC B-cell differentiation. Somatic mutations reinforce these physiological effects through enhanced silencing of EZH2 targets in B-cells, and in human B-cell lymphomas. Conditional expression of mutant EZH2 in mice induces GC hyperplasia and accelerated lymphomagenesis in cooperation with BCL2. GCB-type DLBCLs are mostly addicted to EZH2, regardless of mutation status, but not the more differentiated ABC-type DLBCLs, thus clarifying the therapeutic scope of EZH2 targeting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.