To detect large-variance code clones (i.e. clones with relatively more differences) in large-scale code repositories is difficult because most current tools can only detect almost identical or very similar clones. It will make promotion and changes to some software applications such as bug detection, code completion, software analysis, etc. Recently, CCAligner made an attempt to detect clones with relatively concentrated modifications called large-gap clones. Our contribution is to develop a novel and effective detection approach of large-variance clones to more general cases for not only the concentrated code modifications but also the scattered code modifications. A detector named LVMapper is proposed, borrowing and changing the approach of sequencing alignment in bioinformatics which can find two similar sequences with more differences. The ability of LVMapper was tested on both self-synthetic datasets and real cases, and the results show substantial improvement in detecting large-variance clones compared with other state-of-the-art tools including CCAligner. Furthermore, our new tool also presents good recall and precision for general Type-1, Type-2 and Type-3 clones on the widely used benchmarking dataset, BigCloneBench.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.