For the treatment of inflammatory illnesses such as rheumatoid arthritis and carditis, as well as cancer, several anti-inflammatory medications have been created over the years to lower the concentrations of inflammatory mediators in the body. Peptides are a class of medication with the advantages of weak immunogenicity and strong activity, and the phage display technique is an effective method for screening various therapeutic peptides, with a high affinity and selectivity, including anti-inflammation peptides. It enables the selection of high-affinity target-binding peptides from a complex pool of billions of peptides displayed on phages in a combinatorial library. In this review, we will discuss the regular process of using phage display technology to screen therapeutic peptides, and the peptides screened for anti-inflammation properties in recent years according to the target. We will describe how these peptides were screened and how they worked in vitro and in vivo. We will also discuss the current challenges and future outlook of using phage display to obtain anti-inflammatory therapeutic peptides.
The venomous species Deinagkistrodon acutus has been used as anti-inflammatory medicine in China for a long time. It has been proven to have anti-inflammatory activity, but its specific anti-inflammatory components have not yet been fully elucidated. Tumor necrosis factor receptor-1 (TNFR1), which participates in important intracellular signaling pathways, mediates apoptosis, and functions as a regulator of inflammation, is often used as the target to develop anti-inflammatory drugs. The small peptides of snake venom have the advantages of weak immunogenicity and strong activity. To obtain the specific TNFR1 binding peptides, we constructed a T7 phage library of D. acutus venom glands, and then performed biopanning against TNFR1 on the constructed library. After biopanning three times, several sequences with potential binding capacity were obtained and one 41-amino acid peptide was selected through a series of biological analyses including sequence length, solubility, and simulated affinity, named DAvp-1. After synthesis, the binding capacity of DAvp-1 and TNFR1 was verified using surface plasmon resonance technology (SPR). Conclusively, by applying phage display technology, this work depicts the successful screening of a promising peptide DAvp-1 from D. acutus venom that binds to TNFR1. Additionally, our study emphasizes the usefulness of phage display technology for studies on screening natural product components.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.