Representation learning is the foundation of machine reading comprehension and inference. In state-of-theart models, character-level representations have been broadly adopted to alleviate the problem of effectively representing rare or complex words. However, character itself is not a natural minimal linguistic unit for representation or word embedding composing due to ignoring the linguistic coherence of consecutive characters inside word. This paper presents a general subwordaugmented embedding framework for learning and composing computationally-derived subword-level representations. We survey a series of unsupervised segmentation methods for subword acquisition and different subword-augmented strategies for text understanding, showing that subword-augmented embedding significantly improves our baselines in various types of text understanding tasks on both English and Chinese benchmarks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.