Models trained to estimate word probabilities in context have become ubiquitous in natural language processing. How do these models use lexical cues in context to inform their word probabilities? To answer this question, we present a case study analyzing the pre-trained BERT model with tests informed by semantic priming. Using English lexical stimuli that show priming in humans, we find that BERT too shows "priming," predicting a word with greater probability when the context includes a related word versus an unrelated one. This effect decreases as the amount of information provided by the context increases. Followup analysis shows BERT to be increasingly distracted by related prime words as context becomes more informative, assigning lower probabilities to related words. Our findings highlight the importance of considering contextual constraint effects when studying word prediction in these models, and highlight possible parallels with human processing.
Humans often communicate by using imprecise language, suggesting that fuzzy concepts with unclear boundaries are prevalent in language use. In this paper, we test the extent to which models trained to capture the distributional statistics of language show correspondence to fuzzy-membership patterns. Using the task of natural language inference, we test a recent state of the art model on the classical case of temperature, by examining its mapping of temperature data to fuzzyperceptions such as cool, hot, etc. We find the model to show patterns that are similar to classical fuzzy-set theoretic formulations of linguistic hedges, albeit with a substantial amount of noise, suggesting that models trained solely on language show promise in encoding fuzziness.
My doctoral research focuses on understanding semantic knowledge in neural network models trained solely to predict natural language (referred to as language models, or LMs), by drawing on insights from the study of concepts and categories grounded in cognitive science. I propose a framework inspired by 'inductive reasoning,' a phenomenon that sheds light on how humans utilize background knowledge to make inductive leaps and generalize from new pieces of information about concepts and their properties. Drawing from experiments that study inductive reasoning, I propose to analyze semantic inductive generalization in LMs using phenomena observed in human-induction literature, investigate inductive behavior on tasks such as implicit reasoning and emergent feature recognition, and analyze and relate induction dynamics to the learned conceptual representation space.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.