No abstract
<p>Potholes are one of the public&#8217;s main local concerns as they cost a lot to the economy in terms of repair bills, delays while repairs are carried out and vehicle wear-and-tear. According to the Annual Local Authority Road Maintenance (ALARM) survey, eliminating the pothole backlog in England and Wales would cost &#163;9.8bn and take a decade to complete despite increased local roads investment. The aim of this study is to research why potholes occur in the first place using non-destructive testing (NDT) and potential remedies in terms of the development of effective design and innovative materials to prevent their formation in future.</p><p>To investigate the causes of potholes formation, in-situ use of NDT methods such as ground-penetrating radar (GPR) has proven effectiveness as roads remain in continuous use. Analysis of GPR data can provide information on layer depths, material condition, moisture, voiding, reinforcement and location of other features [1, 2, 3].</p><p>Through our results, we will test two hypothesis; (i) shallow potholes are formed on loss of adhesion of the surface course, (ii) deep potholes are formed due to the loss of bearing capacity or settlement of the subgrade. Poor drainage in combination of heavy loads trigger shallow potholes while extreme wetting-drying cycles as a result of climate change decayed subgrade conditions of the pavement.</p><p>Results presented in this abstract are part of a PhD project funded by the University of West London.</p><p>&#160;</p><p><strong>References</strong></p><p>[1] Saarenketo, T. and T. Scullion (2000). Road evaluation with ground penetrating radar. Journal of Applied Geophysics (43): 119&#8211;138.</p><p>[2] Benedetto, A., Tosti, F., Bianchini Ciampoli, L., and F. D&#8217;Amico (2016). An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Processing (132): 201-209.</p><p>[3] Benedetto, A., Benedetto, F., and F. Tosti (2012). GPR applications for geotechnical stability of transportation infrastructures. Nondestructive Testing and Evaluation, 27 (3): 253&#8211;262.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.