The novel coronavirus (2019-nCoV) is a human and animal pathogen recently emerged in the city of Wuhan in Hubei province of China, causing a spectrum of severe respiratory illnesses. Corona viruses makes entry in to human cells through its spike (S) protein that binds to cell surface receptors. Wide spread of 2019-nCoV has been attributed to relatively high affinity of S protein to its receptor. Although S protein is a highly importantdrug target, unavailability of a high-resolution crystal structure and solvent accessible binding surface has made it a tedious target for current rapid virtual screening. A homology model of the receptor binding domain (RBD) of 2019 -n CoV S protein that is reasonably acceptable for drug screening was prepared using a high resolution crystal structure of SARS corona virus (SARS CoV)S protein. Data obtained from RBD- receptor docking experiments and published molecular dynamics experiments were used to map a RBD-receptor interaction hotspot that can be used for designing small molecule inhibitors. The hot spot was then used for virtual screening of more than 3000 drugs approved by U.S Food and Drug Administration (FDA) and other authorities for human use. Two anthracycline class drugs (zorubicin and aclarubicin) and a food dye (E 155) were predicted to be potent inhibitors of RBD – receptor interaction. Results of present study provide evidence for the potential of these compounds asprophylactic medications or for use to reduce disease severity of COVID -19.
The novel coronavirus (SARS-CoV-2) is a human pathogen recently emerged in China, causing a global pandemic of severe respiratory illness (COVID19). SARS-CoV-2 makes entry into human cells through its spike (S) protein that binds to cell surface receptors. Widespread of SARS-CoV-2 has been attributed to high affinity of S protein to its receptor. A homology model of the receptor binding domain of SARS-CoV-2 S protein (RBD) was built. RBD- receptor docking and published molecular dynamics data were used to map the key RBD-receptor interaction hotspot (RBDhp) on the RBD. Primary virtual screening was carried out against RBDhp using more than 3300 compounds approved by U.S Food and Drug Administration (FDA) and other authorities for human use. Compounds that bind to hpRBD with a binding energy ≤ - 6.5 kcal/mol were subjected to secondary screening using a recently published cryo EM (2.9 Å) structure of RBD. A cardiac glycoside (dgitoxin), two anthracyclines (zorubicin and aclarubicin), a tetracycline derivative (rolitetracycline), a cephalosporin (cefoperazone) and a food dye (E-155) were predicted to be most potent inhibitors of RBD – receptor interaction. An anti-asthmatic drug (zafirlukast) and several other drugs (itrazol, fazadinium, troglitazone, gliquidone, Idarubicin, Oxacillin) were found to be high affinity binders that may have a potential to inhibit RBD – receptor interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.