The number of microbiome-related studies has notably increased the availability of data on human microbiome composition and function. These studies provide the essential material to deeply explore host-microbiome associations and their relation to the development and progression of various complex diseases. Improved data-analytical tools are needed to exploit all information from these biological datasets, taking into account the peculiarities of microbiome data, i.e., compositional, heterogeneous and sparse nature of these datasets. The possibility of predicting host-phenotypes based on taxonomy-informed feature selection to establish an association between microbiome and predict disease states is beneficial for personalized medicine. In this regard, machine learning (ML) provides new insights into the development of models that can be used to predict outputs, such as classification and prediction in microbiology, infer host phenotypes to predict diseases and use microbial communities to stratify patients by their characterization of state-specific microbial signatures. Here we review the state-of-the-art ML methods and respective software applied in human microbiome studies, performed as part of the COST Action ML4Microbiome activities. This scoping review focuses on the application of ML in microbiome studies related to association and clinical use for diagnostics, prognostics, and therapeutics. Although the data presented here is more related to the bacterial community, many algorithms could be applied in general, regardless of the feature type. This literature and software review covering this broad topic is aligned with the scoping review methodology. The manual identification of data sources has been complemented with: (1) automated publication search through digital libraries of the three major publishers using natural language processing (NLP) Toolkit, and (2) an automated identification of relevant software repositories on GitHub and ranking of the related research papers relying on learning to rank approach.
The coronavirus disease 2019 (COVID-19) pandemic has been as unprecedented as unexpected, affecting more than 105 million people worldwide as of February 8th, 2020 and causing more than 2.3 million deaths according the World Health Organization. Not only affecting the lungs and provoking acute respiratory distress, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is able to infect multiple cell types including cardiac and vascular cells. Hence a significant proportion of infected patients develop cardiac events such as arrhythmias and heart failure. Patients with cardiovascular comorbidities are at highest risk of cardiac death. To face the pandemic and limit its burden, health authorities have launched several fast track calls for research projects aiming to develop rapid strategies to combat the disease, as well as longer-term projects to prepare for the future. Biomarkers have the possibility to aid in clinical decision making and tailoring healthcare in order to improve patient quality of life. The biomarker potential of circulating RNAs has been recognized in several disease conditions, including cardiovascular disease. RNA biomarkers may be useful in the current COVID-19 situation. The discovery, validation and marketing of novel biomarkers, including RNA biomarkers, require multi-centre studies by large and interdisciplinary collaborative networks, involving both the academia and the industry. Here, members of the EU-CardioRNA COST Action CA17129 summarize the current knowledge about the strain that COVID-19 places on the cardiovascular system and discuss how RNA biomarkers can aid to limit this burden. They present the benefits and challenges of the discovery of novel RNA biomarkers, the need for networking efforts and the added value of artificial intelligence to achieve reliable advances.
To avoid motion artefacts when merging multiple exposures into a high dynamic range image, a number of HDR deghosting algorithms have been proposed. However, these algorithms do not work equally well on all types of scenes, and some may even introduce additional artefacts. As the number of proposed deghosting methods is increasing rapidly, there is an immediate need to evaluate them and compare their results. Even though subjective methods of evaluation provide reliable means of testing, they are often cumbersome and need to be repeated for each new proposed method or even its slight modification. Because of that, there is a need for objective quality metrics that will provide automatic means of evaluation of HDR deghosting algorithms. In this work, we explore several computational approaches of quantitative evaluation of multiexposure HDR deghosting algorithms and demonstrate their results on five state-of-the-art algorithms. In order to perform a comprehensive evaluation, a new dataset consisting of 36 scenes has been created, where each scene provides a different challenge for a deghosting algorithm. The quality of HDR images produced by deghosting method is measured in a subjective experiment and then evaluated using objective metrics. As this paper is an extension of our conference paper, we add one more objective quality metric, UDQM, as an additional metric in the evaluation. Furthermore, analysis of objective and subjective experiments is performed and explained more extensively in this work. By testing correlation between objective metric and subjective scores, the results show that from the tested metrics, that HDR-VDP-2 is the most reliable metric for evaluating HDR deghosting algorithms. The results also show that for most of the tested scenes, Sen et al.'s deghosting method outperforms other evaluated deghosting methods. The observations based on the obtained results can be used as a vital guide in the development of new HDR deghosting algorithms, which would be robust to a variety of scenes and could produce high quality results.
Cardiovascular disease (CVD) remains the leading cause of death worldwide and, despite continuous advances, better diagnostic and prognostic tools, as well as therapy, are needed. The human transcriptome, which is the set of all RNA produced in a cell, is much more complex than previously thought and the lack of dialogue between researchers and industrials and consensus on guidelines to generate data make it harder to compare and reproduce results. This European Cooperation in Science and Technology (COST) Action aims to accelerate the understanding of transcriptomics in CVD and further the translation of experimental data into usable applications to improve personalized medicine in this field by creating an interdisciplinary network. It aims to provide opportunities for collaboration between stakeholders from complementary backgrounds, allowing the functions of different RNAs and their interactions to be more rapidly deciphered in the cardiovascular context for translation into the clinic, thus fostering personalized medicine and meeting a current public health challenge. Thus, this Action will advance studies on cardiovascular transcriptomics, generate innovative projects, and consolidate the leadership of European research groups in the field.COST (European Cooperation in Science and Technology) is a funding organization for research and innovation networks (www.cost.eu).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.