Background When severe, COVID-19 shares many clinical features with bacterial sepsis. Yet, secondary bacterial infection is uncommon. However, as epithelium is injured and barrier function is lost, bacterial products entering the circulation might contribute to the pathophysiology of COVID-19. Methods We studied 19 adults, severely ill patients with COVID-19 infection, who were admitted to King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between 13th March and 17th April 2020. Blood samples on days 1, 3, and 7 of enrollment were analyzed for endotoxin activity assay (EAA), (1 → 3)-β-d-glucan (BG), and 16S rRNA gene sequencing to determine the circulating bacteriome. Results Of the 19 patients, 13 were in intensive care and 10 patients received mechanical ventilation. We found 8 patients with high EAA (≥ 0.6) and about half of the patients had high serum BG levels which tended to be higher in later in the illness. Although only 1 patient had a positive blood culture, 18 of 19 patients were positive for 16S rRNA gene amplification. Proteobacteria was the most abundant phylum. The diversity of bacterial genera was decreased overtime. Conclusions Bacterial DNA and toxins were discovered in virtually all severely ill COVID-19 pneumonia patients. This raises a previously unrecognized concern for significant contribution of bacterial products in the pathogenesis of this disease.
Background: When severe, COVID-19 shares many clinical features with bacterial sepsis. Yet, secondary bacterial infection is uncommon. However, as epithelium are injured and barrier function is lost, bacterial products entering the circulation might contribute to the pathophysiology of COVID-19. Methods: We studied 19 adults, severely ill patients with COVID-19 infection, who were admitted to King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between 13th March and 17th April 2020. Blood samples on day 1, 3, and 7 of enrollment were analyzed for endotoxin activity assay (EAA), Beta-D-Glucan (BG), and 16S rRNA gene sequencing to determine the circulating bacteriome. Findings: Of the 19 patients, 14 were in intensive care and 10 patients received mechanical ventilation. We found 8 patients with high EAA (≥ 0.6) and about half of the patients had high serum BG levels which tended to be higher in later in the illness. Although only 1 patient had a positive blood culture, 18 of 19 patients were positive for 16S rRNA gene amplification. Proteobacteria was the most abundant phylum. The diversity of bacterial genera was decreased overtime. Interpretation: Bacterial DNA and toxins were discovered in virtual all severely ill COVID-19 pneumonia patients. This raises a previously unrecognized concern for significant contribution of bacterial products in the pathogenesis of this disease.
We report a case of COVID‐19 in kidney transplant patient in Thailand. A 58‐year‐old 2 years post–kidney transplant recipient, with maintenance immunosuppression of tacrolimus, mycophenolate mofetil (MMF), and prednisolone, presented with acute diarrhea which followed by fever on day 12. Symptoms of pneumonia together with lymphopenia from complete blood count were developed on day 7 after onset of fever with the x‐ray finding of bilateral multifocal patchy infiltration. COVID‐19 infection has been confirmed by reverse real‐time polymerase chain reaction (PCR) in nasal swab as well as found in stool. Darunavir together with ritonavir, hydroxychloroquine, azithromycin, and favipiravir was initiated on the first day of admission at primary hospital. Patient has been transferred to our hospital on day 2 of admission in which tacrolimus together with MMF was discontinued. High‐flow nasal cannula oxygen therapy was required on days 4‐5 of hospitalization. Tocilizumab was administered after rising of serum IL‐6 level. Symptoms of pneumonia were improved in which no oxygen treatment required from day 10 of hospitalization. Drug interaction between tacrolimus and anti‐viral treatment leads to severely high level of tacrolimus which caused reversible acute kidney injury (AKI) after supportive treatment.
<b><i>Introduction:</i></b> Uncontrolled systemic inflammation may occur in severe coronavirus disease 19 (COVID-19). We have previously shown that endotoxemia, presumably from the gut, may complicate COVID-19. However, the role of endotoxin adsorbent (EA) therapy to mitigate organ dysfunction in COVID-19 has not been explored. <b><i>Methods:</i></b> We conducted a retrospective observational study in COVID-19 patients who received EA therapy at the King Chulalongkorn Memorial Hospital, Bangkok, Thailand, between March 13 and April 17, 2020. Relevant clinical and laboratory data were collected by inpatient chart review. <b><i>Results:</i></b> Among 147 hospitalized COVID-19 patients, 6 patients received EA therapy. All of the 6 patients had severe COVID-19 infection with acute respiratory distress syndrome (ARDS). Among these, 5 of them were mechanically ventilated and 4 had complications of secondary bacterial infection. The endotoxin activity assay (EAA) results of pre-EA therapy ranged from 0.47 to 2.79. The choices of EA therapy were at the discretion of attending physicians. One patient was treated with oXiris® along with continuous renal replacement therapy, and the others received polymyxin B hemoperfusion sessions. All patients have survived and were finally free from the mechanical ventilation as well as had improvement in PaO<sub>2</sub>/FiO<sub>2</sub> ratio and decreased EAA level after EA therapy. <b><i>Conclusions:</i></b> We demonstrated the clinical improvement of severe COVID-19 patients with elevated EAA level upon receiving EA therapy. However, the benefit of EA therapy in COVID-19 ARDS is still unclear and needs to be elucidated with randomized controlled study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.