Administration of antimicrobials to food-producing animals increases the risk of higher antimicrobial resistance in the normal intestinal flora of these animals. The present cross-sectional study was conducted to investigate antimicrobial susceptibility and extended-spectrum β-lactamase (ESBL)-producing strains and to characterize class 1 integrons in Escherichia coli in healthy swine in Thailand. All 122 of the tested isolates had drug-resistant phenotypes. High resistance was found to ampicillin (98.4% of isolates), chloramphenicol (95.9%), gentamicin (78.7%), streptomycin (77.9%), tetracycline (74.6%), and cefotaxime (72.1%). Fifty-four (44.3%) of the E. coli isolates were confirmed as ESBL-producing strains. Among them, blaCTX-M (45 isolates) and blaTEM (41 isolates) were detected. Of the blaCTX-M-positive E. coli isolates, 37 carried the blaCTX-M-1 cluster, 12 carried the blaCTX-M-9 cluster, and 5 carried both clusters. Sequence analysis revealed blaTEM-1, blaTEM-135, and blaTEM-175 in 38, 2, and 1 isolate, respectively. Eighty-seven (71%) of the 122isolates carried class 1 integrons, and eight distinct drug-resistance gene cassettes with seven different integron profiles were identified in 43 of these isolates. Gene cassettes were associated with resistance to aminoglycosides (aadA1, aadA2, aadA22, or aadA23), trimethoprim (dfrA5, dfrA12, or dfrA17), and lincosamide (linF). Genes encoding β-lactamases were not found in class 1 integrons. This study is the first to report ESBL-producing E. coli with a class 1 integron carrying the linF gene cassette in swine in Thailand. Our findings confirm that swine can be a reservoir of ESBL-producing E. coli harboring class 1 integrons, which may become a potential health risk if these integrons are transmitted to humans. Intensive analyses of animal, human, and environmental isolates are needed to control the spread of ESBL-producing E. coli strains.
Antimicrobial resistance in bacteria associated with food and water is a global concern. To survey the risk, 312 Escherichia coli isolates from shrimp farms and markets in Thailand were examined for susceptibility to 10 antimicrobials. The results showed that 17.6% of isolates (55 of 312) were resistant to at least one of the tested drugs, and high resistance rates were observed to tetracycline (14.4%; 45 of 312), ampicillin (8.0%; 25 of 312), and trimethroprim (6.7%; 21 of 312); 29.1% (16 of 55) were multidrug resistant. PCR assay of the tet (A), tet (B), tet (C), tet (D), tet (E), and tet (G) genes detected one or more of these genes in 47 of the 55 resistant isolates. Among these genes, tet (A) (69.1%; 38 of 55) was the most common followed by tet (B) (56.4%; 31 of 55) and tet (C) (3.6%; 2 of 55). The resistant isolates were further investigated for class 1 integrons. Of the 55 resistant isolates, 16 carried class 1 integrons and 7 carried gene cassettes encoding trimethoprim resistance (dfrA12 or dfrA17) and aminoglycosides resistance (aadA2 or aadA5). Two class 1 integrons, In54 (dfrA17-aadA5) and In27 (dfrA12-orfF-aadA2), were found in four and three isolates, respectively. These results indicate a risk of drug-resistant E. coli contamination in shrimp farms and selling places. The occurrence of multidrug-resistant E. coli carrying tet genes and class 1 integrons indicates an urgent need to monitor the emergence of drug-resistant E. coli to control the dissemination of drug-resistant strains and the further spread of resistance genes to other pathogenic bacteria.
Methicillin-resistant Staphylococcus aureus (MRSA) have been a major public health concern in humans. Among MRSA, livestock-associated (LA)-MRSA strains have always been associated with exposure to livestock or their products and have emerged in different countries globally. Although studies have identified LA-MRSA from healthy pigs and pork in Thailand, prevalence in slaughtered pigs is still unknown. In addition, there are few reports on the epidemiology and molecular characteristics of LA-MRSA in Thailand. Hence, this is the first report investigating the epidemiology and molecular characteristics of MRSA in individual slaughtered pigs and pork in Thailand. A total of 204 nasal swab and 116 retailed pork samples were collected from three slaughterhouses and four fresh markets, respectively. Individual samples were used for screening for MRSA and obtained isolates were examined for drug- resistance profiling for 12 antimicrobial agents of 10 drug classes. In addition, SCCmec typing and multi-locus sequence typing were conducted to obtain genotype profiles. MRSA were isolated from 11 and 52 nasal swab and pork samples, respectively. The prevalence was significantly higher in the pork than in the nasal swab samples (p-value < 0.05). A high prevalence of ST9-SCCmecIX and ST398-SCCmecV with high-level antimicrobial resistance from markets and slaughterhouses indicated the spreading of MRSA with these genotypes in the Thai swine processing chains and suggested the need for further investigation to determine a control.
20Amino acid substitutions providing quinolone resistance to Campyloabcter jejuni have been 21found in the quinolone resistance-determining region of protein DNA gyrase subunit A 22 (GyrA), with the highest frequency at position 86 followed by position 90. In this study, 23wild-type and mutant recombinant DNA gyrase subunits were expressed in Escherichia coli 24 and purified using Ni-NTA agarose column chromatography.
Quinolones have long been used as the first-line treatment for Campylobacter infections. However, an increased resistance to quinolones has raised public health concerns. The development of new quinolone-based antibiotics with high activity is critical for effective, as DNA gyrase, the target of quinolones, is an essential enzyme for bacterial growth in several mechanisms. The evaluation of antibiotic activity against Campylobacter jejuni largely relies on drug susceptibility tests, which require at least 2 days to produce results. Thus, an in vitro method for studying the activity of quinolones against the C. jejuni DNA gyrase is preferred. To identify potent quinolones, we investigated the interaction of C. jejuni DNA gyrase with a number of quinolones using recombinant subunits. The combination of purified subunits exhibited DNA supercoiling activity in an ATP dependent manner. Drug concentrations that inhibit DNA supercoiling by 50% (IC50s) of 10 different quinolones were estimated to range from 0.4 (sitafloxacin) to >100 μg/mL (nalidixic acid). Sitafloxacin showed the highest inhibitory activity, and the analysis of the quinolone structure-activity relationship demonstrated that a fluorine atom at R-6 might play the important role in the inhibitory activity against C. jejuni gyrase. Measured quinolone IC50s correlated well with minimum inhibitory concentrations (R = 0.9943). These suggest that the in vitro supercoiling inhibition assay on purified recombinant C. jejuni DNA gyrase is a useful and predictive technique to monitor the antibacterial potency of quinolones. And furthermore, these data suggested that sitafloxacin might be a good candidate for clinical trials on campylobacteriosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.