Genomic landscapes of 92 adult and 111 pediatric patients with B-cell acute lymphoblastic leukemia (B-ALL) were investigated using next-generation sequencing and copy number alteration analysis. Recurrent gene mutations and fusions were tested in an additional 87 adult and 93 pediatric patients. Among the 29 newly identified in-frame gene fusions, those involving MEF2D and ZNF384 were clinically relevant and were demonstrated to perturb B-cell differentiation, with EP300-ZNF384 inducing leukemia in mice. Eight gene expression subgroups associated with characteristic genetic abnormalities were identified, including leukemia with MEF2D and ZNF384 fusions in two distinct clusters. In subgroup G4 which was characterized by ERG deletion, DUX4-IGH fusion was detected in most cases. This comprehensive dataset allowed us to compare the features of molecular pathogenesis between adult and pediatric B-ALL and to identify signatures possibly related to the inferior outcome of adults to that of children. We found that, besides the known discrepancies in frequencies of prognostic markers, adult patients had more cooperative mutations and greater enrichment for alterations of epigenetic modifiers and genes linked to B-cell development, suggesting difference in the target cells of transformation between adult and pediatric patients and may explain in part the disparity in their responses to treatment.
PML/RARalpha is of crucial importance in acute promyelocytic leukemia (APL) both pathologically and therapeutically. Using a genome-wide approach, we identified in vivo PML/RARalpha binding sites in a PML/RARalpha-inducible cell model. Of the 2979 targeted regions, >62% contained canonical PU.1 motifs and >84% of these PU.1 motifs coexisted with one or more RARE half (RAREh) sites in nearby regions. Promoters with such PU.1-RAREh binding sites were transactivated by PU.1. PU.1-mediated transactivation was repressed by PML/RARalpha and restored by the addition of all-trans retinoic acid (ATRA). Genes containing such promoters were significantly represented by genes transcriptionally suppressed in APL and/or reactivated upon treatment with ATRA. Thus, selective targeting of PU.1-regulated genes by PML/RARalpha is a critical mechanism for the pathogenesis of APL.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.