“Employee turnover is a noteworthy matter in knowledge-based companies.” On the off chance that employee leaves, they carry with them tacit information, often a source of competitive benefit to the other firms. Keeping in mind the end goal, to stay in the market and retain its employees, an organization requires minimizing employee attrition. This article discusses the employee churn/attrition forecast model using various methods of Machine Learning. Model yields are then scrutinized to outline and experiment the best practices on employee withholding at different stages of the employee’s association with an organization. This work has the potential for outlining better employee retention designs and enhancing employee contentment. This paper incorporates and condenses the capacity to gain from information and give information-driven experiences, choice, and forecasts and thinks about significant machine learning systems that have been utilized to create predictive churn models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.