Background: Targeted delivery to the Rheumatoid arthritis (RA) which is characterized by destruction and degeneration of bones due to chronic inflammation is of great need. RA being a chronic autoimmune disorder might result in severe disability and morbidity. A targeted delivery system is designed to deliver methotrexate (MTX) for RA. Methods: Here, we synthesized folic acid (FA) conjugated hydrophobically modified glycol chitosan (GC) self-assembled nanoparticles (FA-GC-SA) for the targeted delivery of MTX to RA. The FA conjugation and hydrophobic modification of GC by stearic acid (SA) was confirmed by Fourier-transform infrared spectroscopy (FTIR). The FA-GC-SA was exploited for developing targeted nanoparticles encapsulating MTX by the ionic gelation method. The particles were characterized and evaluated for their targeting potential in in vitro cell culture studies. Further their in vivo efficacy in arthritis induced rats using collagen was also evaluated. Results: FTIR confirms the successful modification of GC-SA and FA-GC-SA. The FA-GC-SA-MTX of size 153 ± 9 nm were prepared with high encapsulation efficiency of MTX. The FA-GC-SA-MTX size was further confirmed by transmission electron microscopy (TEM). In vitro cell studies revealed the superior efficacy of FA-GC-SA-MTX in cell cytotoxicity. Also, significantly higher cellular uptake of FA functionalized FA-GC-SA-MTX was observed in comparison to non-functionalized GC-SA-MTX attributed to folate receptors (FRs) mediated endocytosis. In vivo results confirms the potential of FA-GC-SA-MTX which reduces reduces the pro-inflammatory cytokines, paw thickness, and arthritis score in collagen induced rats. Conclusion: The results shows that FRs targeted FA-GC-SA-MTX has superior efficacy in the treatment of RA.
Osteoarthritis (OA) is a type of joint disease with a rising prevalence and incidence among the elderly across the global population. Chemokine-like factor 1 (CKLF1) is a human cytokine, which has been demonstrated to be involved in the progression of multiple human diseases. However, little attention has been paid to the impact of CKLF1 on OA. The present study was designed to identify the role of CKLF1 in OA and to clarify the regulatory mechanism. The expression levels of CKLF1 and its receptor CC chemokine receptor 5 (CCR5) were examined by reverse transcription-quantitative PCR (RT-qPCR) and western blotting. A Cell Counting Kit-8 assay was used to estimate cell viability. The levels and expression of inflammatory factors were determined by ELISA and RT-qPCR, respectively. Apoptosis was investigated by TUNEL assays and the protein levels of apoptosis-related factors were analyzed by western blotting. RT-qPCR and western blotting were used to examine the expression of extracellular matrix (ECM) degradation-associated proteins and ECM components. Dimethylmethylene blue analysis was used to analyze the production of soluble glycosamine sulfate additive. A co-immunoprecipitation assay was used to confirm the protein interaction between CKLF1 and CCR5. The results revealed that CKLF1 expression was increased in IL-1β-exposed murine chondrogenic ATDC5 cells. Furthermore, CKLF1 silencing enhanced the viability of IL-1β-induced ATDC5 cells, while inflammation, apoptosis and degradation of the ECM were reduced. Additionally, CKLF1 knockdown led to decreased CCR5 expression in IL-1β-challenged ATDC5 cells, and CKLF1 bound with CCR5. The enhanced viability, as well as the suppressed inflammation, apoptosis and degradation of the ECM, following CKLF1 knockdown in the IL-1β-induced ATDC5 cells were all restored after CCR5 was overexpressed. In conclusion, CKLF1 might serve a detrimental role in the development of OA by targeting its receptor CCR5.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.