Cascaded lattice-Boltzmann method (Cascaded-LBM) employs a new class of collision operators aiming to stabilize computations and remove certain modeling artifacts for simulation of fluid flow on lattice grids with sizes arbitrarily larger than the smallest physical dissipation length scale (Geier et al., Phys. Rev. E 63, 066705 (2006)). It achieves this and distinguishes from other collision operators, such as in the standard single or multiple relaxation time approaches, by performing relaxation process due to collisions in terms of moments shifted by the local hydrodynamic fluid velocity, i.e. central moments, in an ascending order-by-order at different relaxation rates. In this paper, we propose and derive source terms in the Cascaded-LBM to represent the effect of external or internal forces on the dynamics of fluid motion. This is essentially achieved by matching the continuous form of the central moments of the source or forcing terms with its discrete version.Different forms of continuous central moments of sources, including one that is obtained from a local Maxwellian, are considered in this regard. As a result, the forcing terms obtained in this new formulation are Galilean invariant by construction. To alleviate lattice artifacts due to forcing terms in the emergent macroscopic fluid equations, they are proposed as temporally semi-implicit and second-order, and the implicitness is subsequently effectively removed by means of a transformation to facilitate computation. It is shown that the impressed force field influences the cascaded collision process in the evolution of the transformed distribution function. The method of central moments along with the associated orthogonal properties of the moment basis completely determines the analytical expressions for the source terms as a function of the force and macroscopic velocity fields. In contrast to the existing forcing schemes, it is found that they involve higher order terms in velocity space. It is shown that the proposed approach implies "generalization" of both local equilibrium and source terms in the usual lattice frame of reference, which depend on the ratio of the relaxation times of moments of different orders. An analysis by means of the Chapman-Enskog multiscale expansion shows that the Cascaded-LBM with forcing terms is consistent with the Navier-Stokes equations. Computational experiments with canonical problems involving different types of forces demonstrate its accuracy.
In this paper, three-dimensional (3D) multi-relaxation time (MRT) lattice-Boltzmann (LB) models for multiphase flow are presented. In contrast to the Bhatnagar-Gross-Krook (BGK) model, a widely employed kinetic model, in MRT models the rates of relaxation processes owing to collisions of particle populations may be independently adjusted. As a result, the MRT models offer a significant improvement in numerical stability of the LB method for simulating fluids with lower viscosities. We show through the Chapman-Enskog multiscale analysis that the continuum limit behavior of 3D MRT LB models corresponds to that of the macroscopic dynamical equations for multiphase flow. We extend the 3D MRT LB models developed to represent multiphase flow with reduced compressibility effects. The multiphase models are evaluated by verifying the Laplace-Young relation for static drops and the frequency of oscillations of drops. The results show satisfactory agreement with available data and significant gains in numerical stability.
In this paper, a lattice Boltzmann (LB) model is presented for axisymmetric multiphase flows. Source terms are added to a two-dimensional standard lattice Boltzmann equation (LBE) for multiphase flows such that the emergent dynamics can be transformed into the axisymmetric cylindrical coordinate system. The source terms are temporally and spatially dependent and represent the axisymmetric contribution of the order parameter of fluid phases and inertial, viscous and surface tension forces. A model which is effectively explicit and second order is obtained. This is achieved by taking into account the discrete lattice effects in the Chapman-Enskog multiscale analysis, so that the macroscopic axisymmetric mass and momentum equations for multiphase flows are recovered self-consistently. The model is extended to incorporate reduced compressibility effects. Axisymmetric equilibrium drop formation and oscillations, breakup and formation of satellite droplets from viscous liquid cylindrical jets through Rayleigh capillary instability and drop collisions are presented. Comparisons of the computed results with available data show satisfactory agreement.
In this paper, we present a framework based on the generalized lattice Boltzmann equation (GLBE) using multiple relaxation times with forcing term for eddy capturing simulation of wall-bounded turbulent flows. Due to its flexibility in using disparate relaxation times, the GLBE is well suited to maintaining numerical stability on coarser grids and in obtaining improved solution fidelity of near-wall turbulent fluctuations. The subgrid scale (SGS) turbulence effects are represented by the standard Smagorinsky eddy viscosity model, which is modified by using the van Driest wall-damping function to account for reduction of turbulent length scales near walls. In order to be able to simulate a wider class of problems, we introduce forcing terms, which can represent the effects of general nonuniform forms of forces, in the natural moment space of the GLBE. Expressions for the strain rate tensor used in the SGS model are derived in terms of the nonequilibrium moments of the GLBE to include such forcing terms, which comprise a generalization of those presented in a recent work [Yu, Comput. Fluids 35, 957 (2006)]. Variable resolutions are introduced into this extended GLBE framework through a conservative multiblock approach. The approach, whose optimized implementation is also discussed, is assessed for two canonical flow problems bounded by walls, viz., fully developed turbulent channel flow at a shear or friction Reynolds number (Re) of 183.6 based on the channel half-width and three-dimensional (3D) shear-driven flows in a cubical cavity at a Re of 12 000 based on the side length of the cavity. Comparisons of detailed computed near-wall turbulent flow structure, given in terms of various turbulence statistics, with available data, including those from direct numerical simulations (DNS) and experiments showed good agreement. The GLBE approach also exhibited markedly better stability characteristics and avoided spurious near-wall turbulent fluctuations on coarser grids when compared with the single-relaxation-time (SRT)-based approach. Moreover, its implementation showed excellent parallel scalability on a large parallel cluster with over a thousand processors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.