In this study we describe a novel dark-green strain of Trichoderma viride exhibiting complete ensemble of cellulase, hemicellulase and ligninase activities on specific plate assays. To assess the cellulase production in detail, basal salt medium (BSM) was fortified with synthetic (carboxymethyl cellulose (CMC), glucose, sucrose, dextrose, lactose or maltose) and natural (flours of banana, banana peel, jack seed, potato or tapioca) carbon as well as nitrogen (yeast extract, beef extract, peptone, NaNO 3 or NH 4 NO 3) sources. Temperature and pH optima were 28˚C and 4, respectively for the growth of the fungus in CMC-BSM with 137 U/mL cellulase activity, which was enhanced to 173 U/mL at 1.25% CMC concentration. Flours of potato and banana peel supported comparable yields of cellulase to that of CMC, while sodium nitrate was the preferred nitrogen source. The water soluble bluish-green pigment (a probable siderophore) extracted from the spores showed an absorption maximum at 292 nm. To sum up, the complete lignocellulolytic potential of this fungus offers great industrial significance, coupled with the production of a new pigment.
This study describes a novel dark-green spore producing strain of Trichoderma harzianum exhibiting higher activities of cellulase, hemicellulase and ligninase on specific plate assays. To assess the cellulase production in detail, basal salt medium (BSM) was supplemented with synthetic [carboxymethyl cellulose (CMC), glucose, sucrose, dextrose, lactose or maltose] and natural (flours of banana, banana peel, jack seed, potato or tapioca) carbon as well as nitrogen (yeast extract, beef extract, peptone, NaNO 3 or NH 4 NO 3) sources. Temperature and pH optima were 28˚C and 4, respectively for the growth of the fungus in CMC-BSM with 146 U/ml cellulase activity. Flours of potato and banana supported comparable yields of cellulase to that of CMC (147 U/ml and 168 U/ml, respectively), while sodium nitrate was the preferred nitrogen source (150 U/ml). The water soluble yellowish-green pigment (a probable siderophore) extracted from the spores showed an absorption maximum at 414 nm. To comprise, this fungus shows the complete lignocellulolytic potential which offers great industrial significance, especially for the ethanol production from the lignocellulosic waste coupled with the production of a new pigment.
This study illustrates a novel strain (designated as BPU5) of Bacillus thuringiensis (Bt) isolated from the rumen of Malabari goat, capable of producing polymorphic δ‐endotoxin crystals concomitantly with sporulation in Luria–Bertani medium (LB), and the δ‐endotoxin was efficient to combat Tetranychus macfarlanei, a devastating mite. Polymorphic δ‐endotoxin crystals produced were assessed by scanning electron microscopy and monitored its production concomitantly with sporulation in LB with or without sugar supplements. Toxicity of the δ‐endotoxin was assessed on T. macfarlanei using leaf disc bioassay method. Mortality rate was determined by comparing the survival of mites on the diet (prepared in 10% sucrose and powdered rice husk) containing different concentrations (1–10 mg/ml) of 72‐h‐old crude pellet (dried mixture of δ‐endotoxin (17 mg/g pellet), endospores and a few vegetative cells) or control diet with autoclaved pellet. The maximum production (1.39 mg/ml) of δ‐endotoxin was observed at 72 h in LB. Among the sugars (glucose, sucrose, maltose or lactose) tested as additional carbon source, glucose (8 g/l) enhanced (1.82 mg/ml) the production of δ‐endotoxin by 30%. The lethal concentration (LC50) required to kill 50% mites was estimated as 8.024 mg/ml. The δ‐endotoxin produced by B. thuringiensis BPU5 is shown to efficiently combat T. macfarlanei, a devastating mite infesting agricultural fields.
Variability and diversity of Emilia sonchifolia (L.) DC., an important medicinal plant species, in its natural habitats in Kerala were analyzed based on the observations on ten salient morphological characters recorded from thirty populations of the species distributed across Palakkad, Malappuram and Kozhikode districts of Kerala state, India. All the ten characters studied such as plant height, number of branches per plant, length of branches, number of leaves per plant, leaf length, leaf area, internodal length, number of inflorescences per plant, length of peduncle and fresh weight of plants showed statistically significant variations between the populations. The interrelationship between the characters and their association was also studied. Leaf length and leaf area showed significant positive correlation with three characters each. Number of branches per plant, number of leaves per plant, internodal length, number of inflorescences per plant and fresh plant weight showed significant positive correlation with two characters each. Plant height, length of branches and length of peduncle showed no significant positive correlation with any of the characters. By factor analysis three factors could be extracted and number of inflorescences per plant, number of branches per plant, number of leaves per plant and length of branches were found to be the lead characters. Highly significant variability with regard to morphological characters indicates the strong genetic base of the plant species in the field. However, care should be taken to conserve the gene pool of the species especially under the present conditions of environmental threats.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.