A supply chain disruption is an unanticipated event that disrupts the flow of materials in a supply chain. Any given supply chain disruption could have a significant negative impact on the entire supply chain. Supply chain network designs usually consider two stage of decision process in a business environment. The first stage deals with strategic levels, such as to determine facility locations and their capacity, while the second stage considers in a tactical level, such as production quantity, delivery routing. Each stage’s decision could affect the other stage’s result, and it could not be determined individual. However, supply chain network designs often fail to account for supply chain disruptions. In this paper, this paper proposed a two-stage stochastic programming model for a four-echelon global supply chain network design problem considering possible disruptions at facilities. A modified simulated annealing (SA) algorithm is developed to determine the strategic decision at the first stage. The comparison of traditional supply chain network decision framework shows that under disruption, the stochastic solutions outperform the traditional one. This study demonstrates the managerial viability of the proposed model in designing a supply chain network in which disruptive events are proactively accounted for.
Supply chain disruptions compel professionals all over the world to consider alternate strategies for addressing these issues and remaining profitable in the future. In this study, we considered a four-stage global supply chain and designed the network with the objectives of maximizing profit and minimizing disruption risk. We quantified and modeled disruption risk as a function of the geographic diversification of facilities called supply density (evaluated based on the interstage distance between nodes) to mitigate the risk caused by disruptions. Furthermore, we developed a bi-criteria mixed-integer linear programming model for designing the supply chain in order to maximize profit and supply density. We propose an interactive fuzzy optimization algorithm that generates efficient frontiers by systematically taking decision-maker inputs and solves the bi-criteria model problem in the context of a realistic example. We also conducted disruption analysis using a discrete set of disruption scenarios to determine the advantages of the network design from the bi-criteria model over the traditional profit maximization model. Our study demonstrates that the network design from the bi-criteria model has a 2% higher expected profit and a 2.2% lower profit variance under disruption than the traditional profit maximization solution. We envisage that this model will help firms evaluate the trade-offs between mitigation benefits and mitigation costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.