Meningiomas are common nervous system tumors, whose molecular pathogenesis is poorly understood. To date, the most frequent genetic alteration detected in these tumors is loss of heterozygosity (LOH) on chromosome 22q. This finding led to the identification of the neurofibromatosis 2 (NF2) tumor suppressor gene on 22q12, which is inactivated in 40% of sporadic meningiomas. The NF2 gene product, merlin (or schwannomin), is a member of the protein 4.1 family of membrane-associated proteins, which also includes ezrin, radixin and moesin. Recently, we identified another protein 4.1 gene, DAL-1 (differentially expressed in adenocarcinoma of the lung) located on chromosome 18p11.3, which is lost in approximately 60% of non-small cell lung carcinomas, and exhibits growth-suppressing properties in lung cancer cell lines. Given the homology between DAL-1 and NF2 and the identification of significant LOH in the region of DAL-1 in lung, breast and brain tumors, we investigated the possibility that loss of expression of DAL-1 was important for meningioma development. In this report, we demonstrate DAL-1 loss in 60% of sporadic meningiomas using LOH, RT-PCR, western blot and immunohistochemistry analyses. Analogous to merlin, we show that DAL-1 loss is an early event in meningioma tumorigenesis, suggesting that these two protein 4.1 family members are critical growth regulators in the pathogenesis of meningiomas. Furthermore, our work supports the emerging notion that membrane-associated alterations are important in the early stages of neoplastic transformation and the study of such alterations may elucidate the mechanism of tumorigenesis shared by other tumor types.
The ethanolic extract from Rhodomyrtus tomentosa leaf exhibited good antibacterial activities against both methicillin-resistant Staphylococcus aureus (MRSA) and S. aureus ATCC 29213. Its minimal inhibitory concentration (MIC) values ranged from 31.25–62.5 µg/ml, and the minimal bactericidal concentration (MBC) was 250 µg/ml. Rhodomyrtone, an acylphloroglucinol derivative, was 62.5–125 times more potent at inhibiting the bacteria than the ethanolic extract, the MIC and MBC values were 0.5 µg/ml and 2 µg/ml, respectively. To provide insights into antibacterial mechanisms involved, the effects of rhodomyrtone on cellular protein expression of MRSA have been investigated using proteomic approaches. Proteome analyses revealed that rhodomyrtone at subinhibitory concentration (0.174 µg/ml) affected the expression of several major functional classes of whole cell proteins in MRSA. The identified proteins involve in cell wall biosynthesis and cell division, protein degradation, stress response and oxidative stress, cell surface antigen and virulence factor, and various metabolic pathways such as amino acid, carbohydrate, energy, lipid, and nucleotide metabolism. Transmission electron micrographs confirmed the effects of rhodomyrtone on morphological and ultrastructural alterations in the treated bacterial cells. Biological processes in cell wall biosynthesis and cell division were interrupted. Prominent changes including alterations in cell wall, abnormal septum formation, cellular disintegration, and cell lysis were observed. Unusual size and shape of staphylococcal cells were obviously noted in the treated MRSA. These pioneer findings on proteomic profiling and phenotypic features of rhodomyrtone-treated MRSA may resolve its antimicrobial mechanisms which could lead to the development of a new effective regimen for the treatment of MRSA infections.
DCIS = ductal carcinoma in situ; IDC = invasive ductal carcinoma; LOH = loss of heterozygosity; PCR = polymerase chain reaction. AbstractWe examined the stage specificity and heterogeneity of 18p11 alterations in a series of tumors representing 96 microdissected samples. Significant loss of heterozygosity (LOH) (63%) was found, with 56% occurring early in ductal carcinoma in situ. Although most cases indicated LOH was clonally inherited, heterogeneity for 18p LOH occurred in 27% of tumors. When compared with other LOH data, 18p LOH was found in conjunction with allelic deletion on 3p, 9p, 17p and 17q, while 13q, 16q, and 11p were less frequently associated. These analyses suggest chromosome 18p11 alteration is a common and early event in breast disease.
DAL-1/4.1B (EPB41L3)is a member of the protein 4.1 superfamily, which encompasses structural proteins that play important roles in membrane processes via interactions with actin, spectrin, and the cytoplasmic domains of integral membrane proteins. DAL-1/4.1B localizes within chromosomal region 18p11.3, which is affected by loss of heterozygosity (LOH) in various adult tumors. Reintroduction of this protein into DAL-1/4.1B-null lung and breast tumor cell lines significantly reduced the number of cells, providing functional evidence that this protein possesses a growth suppressor function not confined to a single cell type. For characterization of the mutational mechanisms responsible for loss of DAL-1/4.1B function in tumors, the exon-intron structure of DAL-1/4.1B was examined for mutations in 15 normal/tumor pairs of non-small cell lung carcinoma by single-strand conformation polymorphism analysis. These studies revealed that small intragenic mutations are uncommon in DAL-1/4.1B. Furthermore, LOH analysis on 129 informative early-stage breast tumors utilizing a new intragenic C/T single-nucleotide polymorphism in exon 14 revealed that LOH resulted in preferential retention of the C-containing allele, suggesting that allele-specific loss is occurring. These studies indicate that mechanisms such as imprinting or monoallelic expression in combination with loss of heterozygosity may be responsible for loss of the DAL-1/4.1B protein in early breast disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.