To minimize chemical waste and protect the environment, our team has used green analysis with natural reagents. In this work, we designed a natural-reagent assay kit for iron determination and implemented it in chemistry education in Thailand. The iron assay method was adapted from Thai local wisdom of testing water quality using guava leaves. The guava leaf powder served as a natural reagent in the assay. The kit included equipment, standard and buffer solutions and a manual. A smart device with a built-in camera was used as a detector. Educators in six universities in Thailand implemented the kit in laboratories with modifications depending on their learning outcomes. The kit implementation was evaluated using a survey with questions in four aspects: usability, learning achievement, green chemistry and portability. The high average scores for all questions (> 4.00 of 5.00 points), with the average overall score of 4.53 ± 0.60, indicated satisfaction regarding in all aspects. Using a locally available bio-resource as a natural reagent for green analysis in chemistry education supported sustainable education in Thailand, in terms of quality education (SDG 4) and reduced inequalities (SDG 10) and environmental sustainability (SDG 6—Clean water and sanitation, 12—Responsible consumption and production and 14—Life be-low water).
A mono-segmented sequential injection lab-at-valve (SI-LAV) system for the determination of albumin, glucose, and creatinine, three key biomarkers in diabetes screening and diagnosis, was developed as a single system for multi-analyte analysis. The mono-segmentation technique was employed for in-line dilution, in-line single-standard calibration, and in-line standard addition. This made adjustments to the sample preparation step easy unlike the batch-wise method. The results showed that the system could be used for both fast reaction (albumin) and slow reaction (glucose with enzymatic reaction and creatinine). In the case of slow reaction, the analysis time could be shortened by using the reaction rate obtained with the SI-LAV system. This proposed system is for cost-effective and downscaling analysis, which would be applicable for small hospitals and clinics in remote places with a small number of samples but relatively fast screening would be needed.
The COVID-19 pandemic has forced analytical chemistry educators in Thailand to change methods of teaching and learning to new normal ones. Higher education has faced additional challenges because of a lack of hands-on experiments and an increasing number of students in foundation chemistry courses being hindered from practicing skills. This work aimed to develop a Lab-at-Home (LAH) for new normal, analytical chemistry experimentation. The LAH implemented a hands-on green chemistry experiment, i.e., colorimetric determination of iron using non-hazardous reagents (supporting Sustainable Development Goal (SDG) 12-responsible consumption and production). The LAH was sent to students at their location before the synchronous class, where the instructors were prompt to supervise. Thus, this supports SDG4-quality education and SDG10-reduced inequalities. The learning outcome achievements, i.e., the analytical characteristics and colorimetry principles comprehension, as well as the ability to perform data analysis, were evaluated by a quiz and laboratory report. LAH satisfaction was assessed by questionnaire and focus group discussion. The learning outcomes were successfully achieved, although students who performed the experiment individually received higher scores than those who did in groups. Students were very satisfied with the LAH as a tool for new normal experimentation, yet some students faced a poor Internet connection during the synchronous online class.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.