This study investigated the possibility of using a phase separation, mixing, and enzymatic gelation approach to construct seafood analogs from plant protein-polysaccharide mixtures with properties mimicking real seafood. Heat-denatured pea protein (10%, w/w) and pectin (0–1%, w/w) were mixed to produce phase separated biopolymer blends. These blends were then subjected to mild shearing (350 rpm) to obtain fiber-like structures, which were then placed in molds and set by gelling the pea proteins using transglutaminase (2%, w/w). The appearance, texture, and cooking properties of the resulting scallop analogs were characterized and compared to those of real scallop. The presence of the pectin promoted the formation of a honeycomb structure in the scallop analogs, and microscopic orientation of the proteins was observed in the plane parallel to the applied shear flow. Lower pectin concentrations (0.5%, w/w) led to stronger gels with better water holding capacity than higher ones (1.0%, w/w). The appearance and texture of the plant-based scallop analogs were like those of real scallop after grilling, indicating the potential of using this soft matter physics approach to create plant-based seafood analogs. One of the main advantages of this method is that it does not require any expensive dedicated equipment, such as an extruder or shear cell technology, which may increase its commercial viability.
Concerns exist regarding the negative environmental impact and health risks associated with ocean fishing and aquaculture, such as stock depletion, pollution, biodiversity loss, and toxin presence. To address these concerns, plant-based seafood analogs are being developed. Our previous study successfully created plant-based scallop analogs using pea proteins and citrus pectin, resembling real scallops in appearance and texture. This study focuses on comparing the digestive fate of these analogs to real scallops, as it can impact their nutritional properties. Using an in vitro digestion model (INFOGEST), we simulated oral, gastric, and small intestinal conditions. The analysis revealed differences in the microstructure, physicochemical properties, and protein digestibility between the plant-based scallops and real scallops. The particle size and charge followed the following similar trends for both types of scallops: the particle size decreased from the mouth to the stomach to the small intestine; the particles were negative in the mouth, positive in the stomach, and negative in the small intestine. The protein digestibility of the plant-based scallops was considerably lower than that of real scallops. For instance, around 18.8% and 61.4% of protein was digested in the stomach and small intestine phases for the real scallop (80.2% total digestion), whereas around 8.7% and 47.7% of the protein was digested for the plant-based scallop (56.4% total digestion). The lower digestibility of the plant-based scallops may have been due to differences in the protein structure, the presence of dietary fibers (pectin), or antinutritional factors in the plant proteins. These findings are crucial for developing more sustainable next-generation plant-based seafood analogs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.