Various types of fiber-optic temperature sensors have been developed on the basis of modal interference in multimode fibers, which include not only glass fibers but also polymer optical fibers (POFs). Herein, we investigate the spectral patterns of the modal interference in multi-core POFs (originally developed for imaging) and observe their unique temperature dependencies with no clear frequency shift or critical wavelength. We then show that, by machine learning, the modal interference in the multi-core POFs can be potentially used for highly accurate temperature sensing with an error of ∼0.3 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.