Multimode fibers provide a unique opportunity for exploring the spatial degrees of freedom for high throughput light transmission. However, the modal dispersion prevents from the straightforward application of multimode fibers for space division multiplexing, such as image transmission. Herein, we propose and experimentally demonstrate a deep neural network termed multimode fiber inverse-scattering net for overcoming the modal dispersion induced scrambling in multimode fibers. Such a network is capable of transmitting grayscale image through the multimode fiber with high fidelity. 256-level grayscale images with 128 × 128 spatial channels encoded in the input wavefront can be retrieved from the output optical speckle patterns, where the average Pearson correlation coefficient and structural similarity index are as large as 0.97 and 0.95, respectively. Our results demonstrate that the proposed deep neural network has an excellent ability for learning the relationship between the input and output optical fields of a multimode fiber, which might facilitate the realization of high throughput space division multiplexing through multimode fibers.
Perfect optical vortices enable the unprecedented optical multiplexing utilizing orbital angular momentum of light, which, however, suffer from distortion when they propagate in inhomogeneous media. Herein, we report on the experimental demonstration of perfect optical vortice generation through strongly scattering media. The transmission-matrix-based point-spread-function engineering is applied to encode the targeted mask in the Fourier domain before focusing. We experimentally demonstrate the perfect optical vortice generation either through a multimode fiber or a ground glass, where the numerical results agree well with the measured one. Our results might facilitate the manipulation of orbital angular momentum of light through disordered scattering media and shed new light on the optical multiplexing utilizing perfect optical vortices.
Dielectric Mie scatterers possessing simultaneously magnetic and electric resonances can be used to tailor scattering utilizing the interference among electromagnetic multipole moments. Cloaking for this type of Mie scatterer is important for various applications. However, the existing cloaking mechanisms mainly focus on the elimination of net electric dipole moments, which have not been generalized to a Mie scatterer with both magnetic and electric responses yet. Herein, we propose and experimentally demonstrate an invisible Mie scatterer utilizing a hybrid skin cloak. The hybrid mechanism relies on the realization of a magnetic analog of a plasmonic cloak and the electric anapole condition to eliminate the net magnetic and electric dipole moments simultaneously. Microwave experiments are provided to validate the proposal. Our results not only introduce a new concept of skin cloaking for electromagnetic scatterers, but also provide new insight for the invisibility and illusion of Mie scatterers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.