In general, remote sensing studies assessing cover crop growth are species nonspecific, use imagery from satellites or modified unmanned aerial vehicles (UAVs), and rely on multispectral vegetation indexes (VIs). However, using RGB imagery and visible-spectrum VIs from commercial off-the-shelf (COTS) UAVs to assess species specific cover crop growth is limited in the current scientific literature. Thus, this study evaluated RGB imagery and visible-spectrum VIs from COTS UAVs for suitability to estimate concentration (%) and content (kg ha−1) based cereal rye (CR) biomass, carbon (C), nitrogen (N), phosphorus (P), potassium (K), and sulfur (S). UAV surveys were conducted at two fields in Indiana and evaluated five visible-spectrum VIs—Visible Atmospherically Resistant Index (VARI), Green Leaf Index (GLI), Modified Green Red Vegetation Index (MGRVI), Red Green Blue Vegetation Index (RGBVI), and Excess of Greenness (ExG). This study utilized simple linear regression (VI only) and stepwise multiple regression (VI with weather and geographic data) to produce individual models for estimating CR biomass, C, N, P, K, and S concentration and content. The goodness-of-fit statistics were generated using repeated K-fold cross-validation to compare individual model performance. In general, the models developed using simple linear regression were inferior to those developed using the multiple stepwise regression method. Furthermore, for models developed using the multiple stepwise regression method all five VIs performed similarly when estimating concentration-based CR variables; however, when estimating content-based CR variables the models developed with GLI, MGRVI, and RGBVI performed similarly explaining 74–81% of the variation in CR data, and outperformed VARI and ExG. However, on an individual field basis, MGRVI consistently outperformed GLI and RGBVI for all CR characteristics. This study demonstrates the potential to utilize COTS UAVs for estimating in-field CR characteristics; however, the models generated in this study need further development to expand geographic scope and incorporate additional abiotic factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.