The V−VI group sulfide, Sb 2 S 3 , has been widely studied in the application of optoelectronic components because of its distinctive one-dimensional structure and remarkable optoelectronic properties. Low-dimensional semiconductor materials have attracted widespread interest among scientists because they offer more advantages than their bulk or powder forms for optoelectronic applications. In this work, we report the preparation of centimeter-scale length (0.5−2.2 cm) single-crystal Sb 2 S 3 tubes by chemical vapor deposition (CVD). A photodetector based on a single Sb 2 S 3 tube has a promising optical response over the spectral range of about 450 to 808 nm. The best photoresponse was measured by laser irradiation at a wavelength of 808 nm, and a high current switching ratio of about 200 was obtained with fast rise/decay times of 22 and 24 ms, respectively. Moreover, the Sb 2 S 3 tube-based device exhibited excellent switching cycle stability, which is beneficial for practical applications. These encouraging results facilitate the potential applications of Sb 2 S 3 tube-based optoelectronic and semiconductor devices.
The traditional electrochemical deposition process used to prepare Cu(In, Ga)Se2 (CIGS) thin films has inherent flaws, such as the tendency to produce low-conductivity Ga2O3 phase and internal defects. In this article, CIGS thin films were prepared under vacuum (3 kPa), and the mechanism of vacuum electrodeposition CIGS was illustrated. The route of Ga incorporation into the thin films could be controlled in a vacuum environment via inhibiting pH changes at the cathode region. Through the incorporation of a low-conductivity secondary phase, Ga2O3 was inhibited at 3 kPa, as shown by Raman and X-ray photoelectron spectroscopy. The preparation process used a higher current density and a lower diffusion impedance and charge transfer impedance. The films that were produced had larger particle sizes.
Electrodeposited antimony can be treated with sulfuration–volatilization technology, which causes antimony to volatilize in the form of antimony sulfide. During this process, gold is enriched in the residue, thereby realizing the value-added use of antimony and the recovery of gold. In this study, the thermodynamic conditions of antimony sulfide were analyzed by the Clausius–Clapeyron equation. Moreover, the volatilization behavior of antimony sulfide and the enrichment law of gold were studied by heat volatilization experiments. The effects of the sulfide temperature and volatilization pressure on the separation efficiency of antimony and gold enrichment were investigated. The results demonstrate that the sulfuration rate was the highest, namely 96.06%, when the molar ratio of sulfur to antimony was 3:1, the sulfur source temperature was 400 °C, the antimony source temperature was 550 °C, and the sulfuration time was 30 min. Antimony sulfide prepared under these conditions was volatilized at 800 °C over 2 h at an evaporation pressure of 0.2 atm, and the volatilization rate was the highest, namely 92.81%. Antimony sulfide with a stibnite structure obtained from the sulfuration–volatilization treatment of electrodeposited antimony meets the ideal stoichiometric ratio of sulfur and antimony in Sb2S3 (3:2), and gold is enriched in the residue.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.