In this work, we demonstrated the practical use of Au@Cu2O core–shell and Au@Cu2Se yolk–shell nanocrystals as photocatalysts in photoelectrochemical (PEC) water splitting and photocatalytic hydrogen (H2) production. The samples were prepared by conducting a sequential ion-exchange reaction on a Au@Cu2O core–shell nanocrystal template. Au@Cu2O and Au@Cu2Se displayed enhanced charge separation as the Au core and yolk can attract photoexcited electrons from the Cu2O and Cu2Se shells. The localized surface plasmon resonance (LSPR) of Au, on the other hand, can facilitate additional charge carrier generation for Cu2O and Cu2Se. Finite-difference time-domain simulations were carried out to explore the amplification of the localized electromagnetic field induced by the LSPR of Au. The charge transfer dynamics and band alignment of the samples were examined with time-resolved photoluminescence and ultraviolet photoelectron spectroscopy. As a result of the improved interfacial charge transfer, Au@Cu2O and Au@Cu2Se exhibited a substantially larger photocurrent of water reduction and higher photocatalytic activity of H2 production than the corresponding pure counterpart samples. Incident photon-to-current efficiency measurements were conducted to evaluate the contribution of the plasmonic effect of Au to the enhanced photoactivity. Relative to Au@Cu2O, Au@Cu2Se was more suited for PEC water splitting and photocatalytic H2 production by virtue of the structural advantages of yolk–shell architectures. The demonstrations from the present work may shed light on the rational design of sophisticated metal–semiconductor yolk–shell nanocrystals, especially those comprising metal selenides, for superior photocatalytic applications.
We report extensive numerical studies on plasmonic dimers of different configurations and find that their coupling effects can be categorized into three types of phenomena. First, like ordinary mechanical systems, the plasmonic dimers can exhibit positive couplings that show anti-crossing behavior. Second, they can also be arranged to exhibit negative couplings that display opposite trends in resonant frequency shifts. Third, when there are surface currents in proximity to each other, the resonance frequencies of the dimers exhibit unusual redshifts that do not have any analogies in conventional systems. Our work suggests that in addition to the well-known electric and magnetic dipolar interactions, contributions from the inductance of displacement currents in the near field cannot be ignored. Overall, asymmetric plasmonic dimers exhibit better sensitivities than the symmetric counterparts and our extensive studies also enable us to identify the plasmonic dimer with the highest sensing capabilities.
We establish experimental and numerical evidence that the refractive index sensitivities of various subwavelength plasmonic sensors obey a simple universal scaling relation that the sensitivities linearly increase with λm/neff (where λm is the resonant wavelengths and neff is the effective refractive index of the environment) and exhibit a slope equal to 1 instead of 2 predicted theoretically. The universal scaling relation is independent of the geometrical structures or contributions of multipolar resonances of individual metal structures (i.e. plasmonic atoms). It is also independent of spatial distributions or field-enhancements of electromagnetic hot spots in coupled metal structures (i.e. plasmonic molecules). The universal scaling relation reveals the fundamental standing wave resonances for all plasmonic atoms and the predominant near-field electric couplings for most plasmonic molecules. The established universal relation also helps to exclude some magnetically coupled plasmonic molecules for practical applications due to their reduced sensitivities.
A novel photonic crystal lens working in the negative refraction frequency region that can focus a beam of light into a wavelength-sized spot is proposed. The device is formed by drilling air holes of triangular lattice in a portion of a dielectric slab, and the whole structure is designed appropriately such that it can be easily fabricated using today's technology. The finite-difference time-domain simulations confirm that the focusing effect is mainly due to the negative refraction in the photonic crystal region, and the focused light can be efficiently coupled into a dielectric waveguide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.