TX 75083-3836, U.S.A., fax 01-972-952-9435. AbstractBased on encouraging results from laboratory studies described in SPE 62610 (
Soluble polypyrrole (PPy) samples advanced in electrical conductivity were chemically synthesized with dodecylbenzenesulfonate (DBS) sodium salt as a dopant, with poly(ethylene glycol) (PEG) as an additive, and with ammonium persulfate as an oxidant. The PPy-DBS-PEG samples were soluble in organic solvents (N-methylpyrrolinone and m-cresol). The greater the molar percentage ratio was of DBS, the greater the solubility was of synthesized PPy composites (PPy-DBS-PEG). The maximum electrical conductivity at room temperature for PPy-DBS-PEG was 1.02 S/cm, which was in fact the true conductivity of 100/10 (mol %) PPy/DBS. The chemical composition and doping level of PPy-DBS-PEG were determined by elemental analysis. The results of Fourier transform infrared spectroscopy were used for the structural characterization of PPy-DBS-PEG. The scanning electron microscopy results showed that the electrical conductivity was related to the morphology of PPy-DBS-PEG. According to thermogravimetric analysis, PPy-DBS-PEG was more thermostable than PPy-DBS. Electron spin resonance measurements showed that the polaron and bipolaron acted as charge carriers of PPy-DBS-PEG. According to the temperature dependence of the electrical conductivity, PPy-DBS-PEG was a semiconductor and followed the three-dimensional variable-range hopping model. The improved electrical conductivity apparently resulted from the reduction of the crosslinking and structural defects of the PPy chains.
CO2 emission was the major cause that accounted for the global warming and climate chance. How to reduce CO2 footprint to stop or slow down the global warming has been hot topic. As a developing country, China has become the largest CO2 emission nation in the world during the industrialization process to develop economy, although the CO2 emission intensity has been reduced significantly compared to previous stage. China has promised and succeeded to keep the promise reduce carbon intensity to meet the requirement of Paris Agreement. To meet the promise to attain carbon peak emission in 2030 and carbon neutrality in 2060 (CPCN), carbon capture, utilization and storage (CCUS) is an important and necessary step. Considering the high cost, high energy intensity and complex technology integrated optimization add uncertainties of CCS, utilization of captured CO2 can be of vital importance. One of the most attractive CCUS in China is CO2 enhanced oil recovery with captured CO2 (CCS EOR). CO2 EOR with captured CO2 may be one the best CCUS ways for China for the following three reasons. First, it can meet the increasing oil demand while reducing the carbon intensive coal. Second, around 66 CO2 EOR field tests have been conducted in China and experiences have ben gained. Finally, CO2 EOR in the USA was a proven technology which can increase oil production significantly and stably. Latest CCUS technology progress in China was reviewed. As of July 2021, 49 projects were carried out or under construction. Net CO2 avoided costs from 39 projects varied from 120 to 730 CNY/ ton CO2 (18.5-112.3 USD/ ton CO2). Although CCUS technology development in China was significant, the gap between global leading levels are obvious. Current challenges of CCS EOR include high CO2 capture cost, small scale, low incremental oil recovery, long-time huge capital input. The costs can be significantly reduced when the scale was enlarged to a commercial scale and transportation costs were further reduced by either pipelines or trains. CO2 transportation with well-distributed high-speed rail in China may be a feasible choice in future. If the CO2 EOR in China develops with the same speed as the USA, CO2 used for EOR in 2050 can be as high as 87.27 million tons. CO2 used for CO2 EOR in 2050 can account for 17% to 44% of the CO2 emission. CCS EOR in China will provid both domestic and international companies with good opportunities.
Proppant concentration and fracture surface morphology are two significant fractures that can affect proppant transport and deposition behavior especially in tight and oil and gas reservoirs. This paper proposed a new set of similarity criteria for proppant experimental design by incorporating proppant concentration and fracture roughness. Based on the proposed criterion, proppant transport experiments in hydraulic fractures of tight oil and gas reservoirs were conducted to explore the proppant placement behavior and identify the key parameters that affected the fracture propping efficiency. Results showed that the proposed similarity criterion can be used to evaluate the onsite proppant transport behavior and optimize hydraulic fracturing parameters. Results showed that the fracture placement efficiency of LD C7 tight oil reservoir is mainly affected by sand ratio and fracturing fluid viscosity. The sand ratio in the LD C7 tight oil reservoir should not be less than 8%, and the optimal carrying fluid viscosity is 5 mPa s. The proppant placement efficiency of the SLG H8 tight gas reservoir is mainly affected by the displacement rate and frac fluid viscosity. The displacement rate of SLG H8 tight gas reservoir should not be less than 3.5 m3/min, and the optimal carrying fluid viscosity is 15 mPa s.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.