The 440-amino acid Mtu recA intein consists of independent protein-splicing and endonuclease domains. Previously, removal of the central endonuclease domain of the intein, and selection for function, generated a 168-residue mini-intein, ΔI-SM, that had splicing activity similar to that of the full-length, wild-type protein. A D422G mutation (ΔI-CM) increased C-terminal cleavage activity. Using the I-SM mini-intein structure (presented here) as a guide, we previously generated a highly active 139-residue mini-intein, ΔΔI hh -SM, by replacing 36 amino acids in the residual endonuclease loop with a seven-residue β-turn from the autoprocessing domain of Hedgehog protein. The threedimensional structures of ΔI-SM, ΔΔI hh -SM, and two variants, ΔΔI hh -CM and ΔΔI hh , have been determined to evaluate the effects of the minimization on intein integrity and to investigate the structural and functional consequences of the D422G mutation. These structural studies show that Asp422 is capable of interacting with both the N-and C-termini. These interactions are lacking in the CM variant, but are replaced by contacts with water molecules. Accordingly, additional mutagenesis of residue 422, combined with mutations that isolate N-terminal and C-terminal cleavage, showed that the side chain of Asp422 plays a role in both N-and C-terminal cleavage, thereby suggesting that this highly-conserved residue regulates the balance between the two reactions.
Creating artificial protein families affords new opportunities to explore the determinants of structure and biological function free from many of the constraints of natural selection. We have created an artificial family comprising ˜3,000 P450 heme proteins that correctly fold and incorporate a heme cofactor by recombining three cytochromes P450 at seven crossover locations chosen to minimize structural disruption. Members of this protein family differ from any known sequence at an average of 72 and by as many as 109 amino acids. Most (>73%) of the properly folded chimeric P450 heme proteins are catalytically active peroxygenases; some are more thermostable than the parent proteins. A multiple sequence alignment of 955 chimeras, including both folded and not, is a valuable resource for sequence-structure-function studies. Logistic regression analysis of the multiple sequence alignment identifies key structural contributions to cytochrome P450 heme incorporation and peroxygenase activity and suggests possible structural differences between parents CYP102A1 and CYP102A2.
Extreme thermophiles produce two types of unusual polyamine: long linear polyamines such as caldopentamine and caldohexamine, and branched polyamines such as quaternary ammonium compounds [e.g. tetrakis(3-aminopropyl)ammonium]. To clarify the physiological roles of long linear and branched polyamines in thermophiles, we synthesized them chemically and tested their effects on the stability of ds (double-stranded) and ss (single-stranded) DNAs and tRNA in response to thermal denaturation, as measured by differential scanning calorimetry. Linear polyamines stabilized dsDNA in proportion to the number of amino nitrogen atoms within their molecular structure. We used the empirical results to derive formulae that estimate the melting temperature of dsDNA in the presence of polyamines of a particular molecular composition. ssDNA and tRNA were stabilized more effectively by tetrakis(3-aminopropyl)ammonium than any of the other polyamines tested. We propose that long linear polyamines are effective to stabilize DNA, and tetrakis(3-aminopropyl)ammonium plays important roles in stabilizing RNAs in thermophile cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.