Background: FilGAP is a Rac GTPase-activating protein, but how it is regulated remains unclear. Results: GTPase Arf6 binds to FilGAP and stimulates its RacGAP activity to induce plasma membrane blebbing. Conclusion: GTPase Arf6 is a novel physiological regulator of FilGAP. Significance: This study establishes a novel molecular link between Arf6 and FilGAP that may have a role in Arf6-dependent inactivation of Rac.
The hypothalamic suprachiasmatic nucleus (SCN), the central circadian pacemaker in mammals, undergoes serotonergic regulation, but the underlying mechanisms remain obscure. Here, we generated a subclone of an SCN progenitor cell line expressing Ca2+ sensors (SCN2.2YC) and compared its 5-HT receptor signalling with that of rat SCN neurons in brain slices. SCN2.2YC cells expressed 5-HT1A/2A/2B/2C, but not 5A/7, while all six subtypes were expressed in SCN tissues. High K+ or 5-HT increased cytosolic Ca2+ in SCN2.2YC cells. The 5-HT responses were inhibited by ritanserin and SB-221284, but resistant to WAY-100635 and RS-127445, suggesting predominant involvement of 5-HT2C for Ca2+ mobilisations. Consistently, Ca2+ imaging and voltage-clamp electrophysiology using rat SCN slices demonstrated post-synaptic 5-HT2C expression. Because 5-HT2C expression was postnatally increased in the SCN and 5-HT-induced Ca2+ mobilisations were amplified in differentiated SCN2.2YC cells and developed SCN neurons, we suggest that this signalling development occurs in accordance with central clock maturations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.