Fibre Multi-Object Spectrograph (FMOS) is the first near-infrared instrument with a wide field of view capable of acquiring spectra simultaneously from up to 400 objects. It has been developed as a common-use instrument for the F$/$2 prime-focus of the Subaru Telescope. The field coverage of 30$^\prime$ diameter is achieved using a new 3-element corrector optimized in the near-infrared (0.9–1.8$\ \mu$m) wavelength range. Due to limited space at the prime-focus, we have had to develop a novel fibre positioner, called “Echidna”, together with two OH-airglow suppressed spectrographs. FMOS consists of three subsystems: the prime focus unit for IR, the fibre positioning system/connector units, and the two spectrographs. After full systems integration, FMOS was installed on the telescope in late 2007. Many aspects of the performance were checked through various test and engineering observations. In this paper, we present the optical and mechanical components of FMOS, and show the results of our on-sky engineering observations to date.
The FIBRE-pac (FMOS image-based reduction package) is an IRAF-based reduction tool for the fiber multiple-object spectrograph (FMOS) of the Subaru telescope. To reduce FMOS images, a number of special techniques are necessary, because each image contains about 200 separate spectra with airglow emission lines variable in spatial and time domains, and with complicated throughput patterns for airglow masks. In spite of these features, almost all of the reduction processes, except for a few steps, are carried out automatically by scripts in text format, making it easy to check the commands step by step. Wavelength- and flux-calibrated images together with their noise maps are obtained using this reduction package.
The Fibre Multi-Object Spectrograph (FMOS) is a second-generation common-use instrument of the Subaru telescope. Under an international collaboration scheme of Japan, UK, and Australia, a realistic design of FMOS has been already in completion, and the fabrications of hardware components have been in progress. We present the overall design details together with the special features of FMOS subsystems, such as the prime focus corrector, the prime focus mechanical unit including fibre positioners, and the near-infrared spectrograph, etc.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.