Mitochondrial β-barrel proteins are encoded in the nucleus, translated by cytosolic ribosomes, and then imported into the organelle. Recently, a detailed understanding of the intramitochondrial import pathway of β-barrel proteins was obtained. In contrast, it is still completely unclear how newly synthesized β-barrel proteins reach the mitochondrial surface in an import-competent conformation. In this study, we show that cytosolic Hsp70 chaperones and their Hsp40 cochaperones Ydj1 and Sis1 interact with newly synthesized β-barrel proteins. These interactions are highly relevant for proper biogenesis, as inhibiting the activity of the cytosolic Hsp70, preventing its docking to the mitochondrial receptor Tom70, or depleting both Ydj1 and Sis1 resulted in a significant reduction in the import of such substrates into mitochondria. Further experiments demonstrate that the interactions between β-barrel proteins and Hsp70 chaperones and their importance are conserved also in mammalian cells. Collectively, this study outlines a novel mechanism in the early events of the biogenesis of mitochondrial outer membrane β-barrel proteins.
Since messenger RNAs without a stop codon (nonstop mRNAs) for organelle-targeted proteins and their translation products (nonstop proteins) generate clogged translocon channels as well as stalled ribosomes, cells have mechanisms to degrade nonstop mRNAs and nonstop proteins and to clear the translocons (e.g. the Sec61 complex) by release of nonstop proteins into the organellar lumen. Here we followed the fate of nonstop endoplasmic reticulum (ER) membrane proteins with different membrane topologies in yeast to evaluate the importance of the Ltn1-dependent cytosolic degradation and the Dom34-dependent release of the nonstop membrane proteins. Ltn1-dependent degradation differed for membrane proteins with different topologies and its failure did not affect ER protein import or cell growth. On the other hand, failure in the Dom34-dependent release of the nascent polypeptide from the ribosome led to the block of the Sec61 channel and resultant inhibition of other protein import into the ER caused cell growth defects. Therefore, the nascent chain release from the translation apparatus is more instrumental in clearance of the clogged ER translocon channel and thus maintenance of normal cellular functions.
FROUNT is a cytoplasmic protein that binds to the membrane-proximal C-terminal regions (Pro-Cs) of chemokine receptors, CCR2 and CCR5. The FROUNT-chemokine receptor interactions play a pivotal role in the migration of inflammatory immune cells, indicating the potential of FROUNT as a drug target for inflammatory diseases. To provide the foundation for drug development, structural information of the Pro-C binding region of FROUNT is desired. Here, we defined the novel structural domain (FNT-CB), which mediates the interaction with the chemokine receptors. A recombinant GST-tag-fused FNT-CB protein expression system was constructed. The protein was purified by affinity chromatography and then subjected to in-gel protease digestion of the GST-tag. The released FNT-CB was further purified by anion-exchange and size-exclusion chromatography. Purified FNT-CB adopts a helical structure, as indicated by CD. NMR line-broadening indicated that weak aggregation occurred at sub-millimolar concentrations, but the line-broadening was mitigated by using a deuterated sample in concert with transverse relaxation-optimized spectroscopy. The specific binding of FNT-CB to CCR2 Pro-C was confirmed by the fluorescence-based assay. The improved NMR spectral quality and the retained functional activity of FNT-CB support the feasibility of further structural and functional studies targeted at the anti-inflammatory drug development.
The control of protein solubility is a subject of broad interest. Although several solvent screening methods are available to search for compounds that enhance protein solubilization, their performance is influenced by the intrinsic solubility of the tested protein. We now present a method for screening solubilizing compounds, using an array of N- or C-terminal deletion mutants of the protein. A key behind this approach is that such terminal deletions of the protein affect its aggregation propensity. The solubilization activities of trial solvents are individually assessed, based on the number of solubilized mutants. The solubilizing compounds are then identified from the screened solvents. In this study, the C-terminal chemokine receptor-binding region of the cytoplasmic protein, FROUNT (FNT-C), which mediates intracellular signals leading to leukocyte migration, was subjected to the multicomponent screening. In total, 192 solution conditions were tested, using eight terminal deletion mutants of FNT-C. We identified five solvent conditions that solubilized four or five mutants of FNT-C, and the compounds in the screened solvents were then, respectively, assessed in terms of their solubilization ability. The best compound for solubilizing FNT-C was 1,6-hexanediol. Indeed, 1,6-hexanediol bound to FNT-C and suppressed its precipitation, as showed by NMR and dynamic light scattering analyses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.