Pre-tRNA splicing has been believed to occur in the nucleus. In yeast, the tRNA splicing endonuclease that cleaves the exon-intron junctions of pre-tRNAs consists of Sen54p, Sen2p, Sen34p, and Sen15p and was thought to be an integral membrane protein of the inner nuclear envelope. Here we show that the majority of Sen2p, Sen54p, and the endonuclease activity are not localized in the nucleus, but on the mitochondrial surface. The endonuclease is peripherally associated with the cytosolic surface of the outer mitochondrial membrane. A Sen54p derivative artificially fixed on the mitochondria as an integral membrane protein can functionally replace the authentic Sen54p, whereas mutant proteins defective in mitochondrial localization are not fully active. sen2 mutant cells accumulate unspliced pre-tRNAs in the cytosol under the restrictive conditions, and this export of the pre-tRNAs partly depends on Los1p, yeast exportin-t. It is difficult to explain these results from the view of tRNA splicing in the nucleus. We rather propose a new possibility that tRNA splicing occurs on the mitochondrial surface in yeast.
The splicing of nuclear encoded RNAs, including tRNAs, has been widely believed to occur in the nucleus. However, we recently found that one of the tRNA splicing enzymes, splicing endonuclease, is localized to the outer surface of mitochondria in Saccharomyces cerevisiae . These results suggested the unexpected possibility of tRNA splicing in the cytoplasm. To investigate this possibility, we examined whether cytoplasmic pre-tRNAs are bona fide intermediates for tRNA maturation in vivo . We isolated a new reversible allele of temperature-sensitive (ts) sen2 ( HA-sen2-42 ), which encodes a mutant form of one of the catalytic subunits of yeast splicing endonuclease. The HA-sen2-42 cells accumulated large amounts of pre-tRNAs in the cytoplasm at a restrictive temperature, but the pre-tRNAs were diminished when the cells were transferred to a permissive temperature. Using pulse-chase/hybrid-precipitation techniques, we showed that the pre-tRNAs were not degraded but rather converted into mature tRNAs during incubation at the permissive temperature. These and other results indicate that, in S. cerevisiae , pre-tRNAs in the cytoplasm are genuine substrates for splicing, and that the splicing is indeed carried out in the cytoplasm.
a b s t r a c tThe mitochondrial targeting signal in the presequence of mitochondrial precursor proteins is recognized by Tom20 and subsequently by Tim50 in mitochondria. Yeast Tim50 contains two presequence binding sites in the conserved core domain and in the fungi-specific C-terminal presequence binding domain (PBD). We report the NMR analyses on interactions of a shorter variant of PBD (sPBD), a shorter variant of PBD, with presequences. The presequence is recognized by sPBD in a similar manner to Tom20. sPBD can also bind to the core domain of Tim50 through the presequence binding region, which could promote transfer of the presequence from sPBD to the core domain in Tim50. Structured summary of protein interactions:Tim50 sPBD and Tim50core bind by nuclear magnetic resonance (View interaction) pSu9N and Tim50 sPBD bind by nuclear magnetic resonance (1, 2, 3, 4, 5) pSu9N and dTim20 bind by nuclear magnetic resonance (View interaction)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.