Hypoxia-inducible factor 1 α (HIF1α) and its related factor, HLF, activate expression of a group of genes such as erythropoietin in response to low oxygen. Transfection analysis using fusion genes of GAL4DBD with various fragments of the two factors delineated two transcription activation domains which are inducible in response to hypoxia and are localized in the C-terminal half. Their sequences are conserved between HLF and HIF1α. One is designated NAD (N-terminal activation domain), while the other is CAD (C-terminal activation domain). Immunoblot analysis revealed that NADs, which were rarely detectable at normoxia, became stabilized and accumulated at hypoxia, whereas CADs were constitutively expressed. In the mammalian two-hybrid system, CAD and NAD baits enhanced the luciferase expression from a reporter gene by co-transfection with CREB-binding protein (CBP) prey, whereas CAD, but not NAD, enhanced β-galactosidase expression in yeast by CBP co-expression, suggesting that NAD and CAD interact with CBP/p300 by a different mechanism. Co-transfection experiments revealed that expression of Ref-1 and thioredoxin further enhanced the luciferase activity expressed by CAD, but not by NAD. Amino acid replacement in the sequences of CADs revealed a specific cysteine to be essential for their hypoxiainducible interaction with CBP. Nuclear translocation of thioredoxin from cytoplasm was observed upon reducing O 2 concentrations.
Interferon therapy for cirrhotic patients with chronic hepatitis C, especially those in whom the infection had been cured, inhibited the development of hepatocellular carcinoma and improved survival.
Bile acid homeostasis is tightly controlled by the feedback mechanism in which an atypical orphan nuclear receptor (NR) small heterodimer partner (SHP) inactivates several NRs such as liver receptor homologue-1 and hepatocyte nuclear factor 4. Although NRs have been implicated in the transcriptional regulation of gluconeogenic genes, the effect of bile acids on gluconeogenic gene expression remained unknown. Here, we report that bile acids inhibit the expression of gluconeogenic genes, including glucose-6-phosphatase (G6Pase), phosphoenolpyruvate carboxykinase, and fructose 1,6-bis phosphatase in an SHP-dependent fashion. Cholic acid diet decreased the mRNA levels of these gluconeogenic enzymes, whereas those of SHP were increased. Reporter assays demonstrated that the promoter activity of phosphoenolpyruvate carboxykinase and fructose 1,6-bis phosphatase via hepatocyte nuclear factor 4, or that of G6Pase via the forkhead transcription factor Foxo1, was down-regulated by treatment with chenodeoxicholic acid and with transfected SHP. Remarkably, Foxo1 interacted with SHP in vivo and in vitro, which led to the repression of Foxo1-mediated G6Pase transcription by competition with a coactivator cAMP response element-binding proteinbinding protein. These findings reveal a novel mechanism by which bile acids regulate gluconeogenic gene expression via an SHP-dependent regulatory pathway.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.